Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   SMEs

Last Update: 06-02-2014  
Related category(ies):
Innovation  |  Industrial research  |  Success stories  |  SMEs

 

Countries involved in the project described in the article:
Czech Republic  |  Ireland  |  Norway  |  United Kingdom
Add to PDF "basket"

UV-LEDs lower cost of water purification

New technology for water purification has been developed based on UV-LED and photocatalysis. The water purification device is the work of a research program which brought together a group of SMEs (small and medium sized enterprises) and the Cork Institute of Technology.

Photo of Doctors examining a patient
Video in QuickTime format:  ar  de  en  es  fa  fr  el  it  pt  ru  tr  uk  (9.3 MB)

The two main ingredients are titanium dioxide (TiO2) and UV-LED.

Patrick Dunlop, a photocatalysis research scientist at the University of Ulster, explained how the system works: “We load the glass spheres into a little housing. We then use the LED and we shine UV radiation onto the titanium dioxide coating. The water passes from the fish tank to the reactor, it travels round the spiral over the coated titanium dioxide beads and back through the pump in the fishtank,” he added.

UV irradiation is commonly used for water purification as such rays kill many bacteria and viruses. However, the mercury lamps used are not environmentally friendly, as they leave a very large carbon footprint, and are costly to run.

Researchers from the Cork Institute of Technology worked on UV-LEDs lamps. Firstly, they needed characterize the UV wavelengths and decide on which ones to use for the process.

Researcher at the Centre for Advanced Process and Photonics Analysis at Cork Institute of Technology Liam Lewis described how the group tackled this aspect.

“The light comes out of one device, down to the fibre and into at detector,” he said, explaining how the detection equipment works.

“From the detector we get an image (which is) displayed on the screen, which tells us about the intensity and distribution of the light that comes from the LED. We can use that detail and that data to characterize the device. We can use it to operate at an efficient level and that tells us about the inputs we need for different models when we model the reactor itself,” said Lewis.

Natalia Rebrova is a computer modelling specialist at the Cork Institute of Technology.

“We modulate the intensity of the UV light. We measure the quantity of beams which arrive on the surface to optimize the distance between the UV source and the dish. The speed of the chemical reaction depends on the intensity and spectrum of the UV light. Therefore we can calculate at which speed the water will be purified,” explained Rebrova.

LED technology is a growing trend. One of the biggest increases in technology is in the field of UV, according to the Aqua-Pulse project coordinator Niall Bolster.

“LED technology is ramping up at considerable rate. We’re getting more and more requests from people who are currently not using LED technology but are keeping abreast of the advances to choose a moment in time where they can bring the LEDs into their process and into their application,” said Bolster.

Photocatalysis is an effective way of getting rid of low concentrations of pollutants. UV irradiated TiO2 is more powerful than chlorine. When bacteria travel to the surface of the catalyst they are killed by photocatalysis. A reactor would preserve the environmental balance in aquariums.

The method might be too expensive for businesses at the moment, according to chemical engineer and CEO of Advanced Materials Jan Procházka.

“The industrial solutions can very efficiently clean high concentrations of pollutants but there is a certain level which is very hard to remove so this is a field where photocatalysis actually is very useful.”

“We realised that the big companies are not all that keen on this type of cleaning and this might a little bit too expensive also and most of it is a long term activity,” said Procházka.

With this reactor the group might show how larger water purification devices could be useful for big companies.

Project details

  • Project acronym:AQUA-PULSE
  • Participants: Ireland (Coordinator), UK, Czech Republic, Norway
  • FP7 Project N° 286641
  • Total costs: €1 415 933
  • EU contribution: €1 117 218
  • Duration: September 2011 - August 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Futuris, the European research programme - on Euronews. The video on this page was prepared in collaboration with Euronews for the Futuris programme.

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center