Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 10 November 2015  
Related theme(s) and subtheme(s)
Agriculture & food
Bioeconomy
EnergyRenewable energy sources
EnvironmentClean technology and recycling
Industrial research
Success storiesEnergy
TransportRoad
Countries involved in the project described in the article
Belgium  |  Denmark  |  Germany  |  Portugal  |  Spain  |  Sweden  |  Switzerland
Add to PDF "basket"

On to second-generation bioethanol

Europe is the world's third-largest producer of bioethanol - an important renewable fuel and energy source. Most stems from crops. Aiming to enlarge the feedstock basis for ethanol production, an EU-funded project has taken advanced bioethanol production from plant waste a large step closer to cost-efficient implementation.

Photo of the Inbicon plant
© Inbicon

By substituting fossil fuels in transport, power generation, the chemical industry and elsewhere, bioethanol could contribute substantially to the EU achieving its greenhouse gas emission (GHG) reduction goals. The sector has been growing continuously over recent years. Today, Europe boasts about 8.8 billion litres of installed production capacity with a market value of close to €8 billion, which only the US and Brazil exceed.

Most bioethanol production takes place in first-generation (1G) plants, which process crops such as wheat or maize, leading to possible competition between food and energy needs. Advanced second-generation (2G) bioethanol production from lignocellulosic biomass, i.e. waste plant matter from forestry or agriculture such as wheat straw or sugarcane bagasse, could change that and substantially increase the GHG reduction potential at the same time.

“Our approach to bioethanol production can reduce GHG emissions by up to 90%, while the conventional crop-based technology achieves a reduction rate of 30 to 50%, depending on the efficiency of the plant,” says Francisco Gírio from the Portuguese National Laboratory for Energy and Geology (LNEG). He coordinated the PROETHANOL2G project, a collaborative effort between partners from Europe and Brazil.

From waste to fuel

When the PROETHANOL2G project started in 2010, no commercial advanced bioethanol plant existed in Europe. Today, Europe’s first plant is up and running in Italy. Nonetheless, considerable R&D will still be needed to make 2G bioethanol a true alternative to its crop-based cousin.

“The main challenge is mostly due to the heterogeneity and complex chemical structure of lignocellulosic biomass,” Gírio explains. “This means that you have different molecules in the raw material compared to crop-based biomass. Therefore, it requires a very effective pre-treatment technology as well as a very good recombinant yeast strain for fast and easy conversion of all sugars after the biomass pre-treatment.”

The production process involves several steps – from pre-treatment and enzymatic hydrolysis to break down the molecules into sugars, to fermentation of the sugar solution with the help of yeast and distillation.

Major advances

As one of its main achievements, the PROETHANOL2G team developed a novel recombinant yeast strain which enables efficient fermentation of different sugars, thus lowering the production costs of advanced biofuels from waste biomass.

In addition, the project vastly improved the integration between biomass pre-treatment, enzymatic hydrolysis and fermentation, which is seen as a challenge to making this advanced biofuels technology competitive. The team also came up with a novel distillation system, which reduces energy consumption and enables the recovery of the largest part of the enzymes. Since one of the main costs of the 2G technology is the cost of the enzymes, being able to reuse them back in the hydrolysis represents major progress.

For the Brazilian market, the consortium altered the PROETHANOL2G process slightly, as a stand-alone 2G set-up might be less feasible in a country such as Brazil, with such large 1G usage.

“Therefore, we integrated our European 2G technology in the 1G technology in Brazil,” says Gírio. This combined 1G-2G system may be the secret to making the PROETHANOL2G technology a success in the South American country, where Inbicon A/S, an industrial project partner from Denmark, is in contact with a major industrial player, planning a joint venture to deploy a commercial 1G-2G plant.

Project details

  • Project acronym:PROETHANOL2G
  • Participants:Portugal (Coordinator), Belgium, Switzerland, Denmark, Sweden, Spain, Germany
  • Project Reference N° 251151
  • Total cost: €2 514 172
  • EU contribution: €980 000
  • Duration:November 2010 - October 2014

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece