Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 18 January 2017  
Related theme(s) and subtheme(s)
Frontier research (ERC)
Health & life sciencesNeuroscience
Social sciences and humanities
Special CollectionsWomen Innovators
Success storiesHealth & life sciences
Countries involved in the project described in the article
France  |  Italy
Add to PDF "basket"

How the brain manipulates time to give us our sense of now

If you've ever seen those annoying lip-sync errors on TV when the video doesn't quite match up to the sound, did you also realise that your brain eventually adjusts the signal to improve your experience?

Photo of people waiting in line
© gemenacom - fotolia

(The story was first published in Horizon Magazine)

In fact, our brains tidy up the signals we receive from the external environment all the time to make our experience of the present more plausible than it really is, according to researchers looking into how we understand what is ‘now’.

The research is part of a series of projects looking at how we process time in the brain and use information we receive to predict future events.

Professor Virginie van Wassenhove, a neuroscientist at CEA Saclay in France, runs the MINDTIME project, funded by the EU's European Research Council (ERC), which is trying to decode our mental representation of time.

She and her team performed an experiment whereby they simplified the lip-synch effect into a series of flashes and beeps going off every second.

These stimulated an oscillating response of activity in the brain at the same frequency, which the researchers measured using a helmet sensitive to fast-changing magnetic signals in the brain. They found that, if the flashes and the beeps are desynchronised, the brain quickly recalibrates its response to make the audio and visual inputs simultaneous.

This flexibility of the brain means that we are continually adjusting and constructing our experience of ‘now’. To some extent, 'the present' is a bendy, flexible entity that our brains choose depending on what we are seeing or hearing.

‘I’m super excited about this,’ said Prof. van Wassenhove. ‘That the brain has the capacity to recalibrate its timing - that's very powerful. It means that the brain can change the simultaneity of events in the world to make our experience more plausible.’

Neural code

The researchers are investigating whereabouts in our brains our concept of time lies. In the same way that we have a neural code for seeing the colour 'red', with this property coded in our neurons to represent the physical world, we must also have cognitive neural code for thinking about and experiencing time as an intelligible awareness.

‘Timing is everywhere, so when we study timing we are looking at the foundation of neural codes,’ said Prof. van Wassenhove. ‘Without good temporal mechanisms you’re not going to be able to plan a future for yourself, so it has huge implications.’

Preparing for the future, at least in terms of immediate events, is something we are quite good at doing without any conscious effort. In Italy, another group of researchers has been investigating how the brain sorts through patterns of events to come up with predictions of what will happen next in the general environment we are in, a process known as statistical learning.

‘This could allow us to notice something as mundane as the leaves blowing in a different direction,’ says Professor Uri Hasson from the University of Trento, who is investigating statistical learning and prediction in the brain as part of the ERC-funded NEUROINT project.

Prof. Hasson and his team are interested in finding out what sort of short-timescale, repetitive patterns our brains are able to pick up on and use to predict the future without us having to actually calculate percentages or probabilities.

Patterns

They have found that some parts of our brains are less active or less connected when presented with either completely random information or simple, regular patterns - which could be caused by something like a dripping tap - but spring into action when faced with more complex patterns - this could equate to something like a mouse rustling in a bag.

Focusing our attention on patterns that are complex but not too random means that we can quickly analyse new environments at a fairly abstract level and compress the information, improving efficiency.

'This is one of the most interesting results of our research program,' says Prof. Hasson.

Project details

  • Project acronym:NEUROINT
  • Participants:Italy (Coordinator)
  • Project Reference N° 263318
  • Total cost: € 978 678
  • EU contribution: € 978 678
  • Duration:January 2011 - December 2015

  • Project acronym:MindTime
  • Participants:France (Coordinator)
  • Project Reference N° 263584
  • Total cost: € 1 500 000
  • EU contribution: € 1 500 000
  • Duration:March 2011 - February 2017

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

NEUROINT web site

NEUROINT project details

MindTime web site

MindTime project details

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece