Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 18 February 2016  
Related category(ies):
Innovation  |  Industrial research  |  Research policy  |  Success stories

 

Countries involved in the project described in the article:
Belgium  |  France  |  Germany  |  Italy  |  Netherlands  |  Switzerland
Add to PDF "basket"

How robotics could transform risky and costly underwater operations

EU-funded researchers are developing an underwater robot with exceptional dexterity that can be controlled remotely from the shore. For the oil and gas industry this could mean reducing the amount of hazardous underwater repair work that is usually carried out by divers, while also cutting operational costs.

Photo of a diver at the bottom of the sea
© fotonazario - Fotolia.com

“Underwater interventions are risky and costly for the offshore oil and gas sector,” explains DEXROV project coordinator Jeremi Gancet from Space Applications Services in Belgium. “Divers are often needed to carry out repair and maintenance as current robotic operating platforms lack the dexterity of humans, and when underwater robots are used you need humans on site (such as on an oil rig) or on a vessel to coordinate and supervise operations. Employing people who must work away from home in harsh conditions is risky and expensive.”

How both industry and research stand to benefit

The three-and-a-half-year DEXROV project, which got underway in March 2015, aims to limit underwater human interventions as much as possible through the development of a dextrous robot, controllable from shore. In addition to the cost and risk involved, there is a limit to how deep human divers can go. A dextrous automated robot capable of descending much further would therefore open up new operational possibilities.

“We are developing dextrous clamps with three fingers, which will make robotic operations closer to human capabilities,” explains Gancet. “For onshore, we are developing exoskeleton systems to enable humans to get a ‘feel’ for what the robot is doing, so that underwater robots can be operated intuitively by experts on land. These commands will then be conveyed to the underwater robot, which could be thousands of kilometres away.”

The main end-user of the technology is expected to be the offshore oil and gas sector, although Gancet also believes that offshore renewable operators – such as windfarms and tidal power stations – will also be interested. “Underwater geological and archaeological research could also benefit as human divers are limited to depths of around 100m,” says Gancet. “The DEXROV project could really bring added value here as well.”

Remote demonstration project planned

DEXROV has organised a number of coordination meetings with project partners and scientific advisers in order to identify priorities, capabilities and potential opportunities. The project’s kick-off meeting in Marseilles involved an expedition to a wreckage site just off the coast, where consortium partners were able to see an ROV (remotely operated vehicle) in action and evaluate the current state of ROV operations up close.

“An advisory board that recently met in September involved a NASA representative discussing their experiences with Mars rovers,” adds Gancet. “Controlling a dextrous underwater robot from afar involves significant challenges such as satellite link delays and the need to ensure communication continuity. We intend to leverage NASA’s experience and transfer our own space expertise regarding technologies used for space crafts in order to further develop our ideas.”

Once the technology is fully developed, a major demonstration of the robotic operating solution will be carried out to depths of up to 1 300m off the coast of Marseilles and controlled from Brussels, Belgium. “We will demonstrate, on a deep-sea mock-up, the challenging scenarios that industry is likely to face and invite industry representatives to see for themselves,” says Gancet. “The eventual aim is to bring the innovation to market. To achieve this, a project follow-up board will continue investigating the potential of DEXROV’s results after formal completion of the project in September 2018.”

Project details

  • Project acronym:DEXROV
  • Participants:Belgium (Coordinator), France, Germany, Italy, Switzerland, Netherlands
  • Project Reference N° 635491
  • Total cost: € 5 336 006
  • EU contribution: € 4 631 182
  • Duration:March 2015 - September 2018

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece