Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport
  Aeronautics
  Intermodality
  Rail
  Road
  Water-borne - incl. marine, inland
  Other

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Transport

Last Update: 26-06-2012  
Related category(ies):
Innovation  |  Industrial research  |  Success stories  |  Security  |  Research policy  |  Transport

 

Countries involved in the project described in the article:
Belgium  |  Croatia  |  Estonia  |  Finland  |  France  |  Greece  |  Israel  |  Poland  |  Romania  |  Spain  |  Turkey
Add to PDF "basket"

Robots on the borderline

Protecting maritime and land borders is a daily challenge for Europe. Researchers have been examining how to use lasers, gamma rays and neutron beams to address that challenge.

Video in QuickTime format:  ar  en  es  fr  it  fa  pt  ru  tr  de  (33 MB)

This is how some new robots are being peacefully engaged on Europe’s last frontier of border protection.

Some very unusual research tools have been arriving in a picturesque port along the Croatian coast.

“This is an airplane bomb. And there is a variety of different bombs like this along the coasts of the Mediterranean Sea, the Baltic Sea and the Atlantic Ocean,” explained nuclear physicist Vladivoj Valković.

They are in fact fake bombs and present no real risk, even if they contain everything needed to make dynamite.

“Hydrogen, carbon, oxygen and nitrogen. TNT has only these four elements. So it is easy to make a simulated bomb preserving the proportion of these four elements,” said Valković.

The dummy bombs are being used to test a submarine able to identify underwater explosives.

The prototype has been designed by scientists at a European Union research project aimed at improving security near Europe’s key maritime infrastructures and along sea routes.

“If there are reports of an unidentified object lying on the sea floor, or being attached to a bridge or any other maritime infrastructural element, you can send our surveyor. It will approach the object, position itself, do the measurements, report the results to the mother ship and then move away. The results of the inspection will be the identification of the chemical composition of the material inside,” concluded Valković.

The prototype is being given a real-life test along the Adriatic coast.

The fake bomb is carefully posed on the sandy sea floor, some 10 metres underwater. The robot is placed over it. It then starts emitting neutron beams that will help to see inside the device.

“Neutrons are able to penetrate materials and find out what they are made from. They collide with the material inside the bomb, and the collision produces gamma rays. We’ve developed an electronic detector that allows us to collect a concentrated data stream from a high-power neutron bombardment,” explained UNCOSS project director Guillaume Sannie.

Special software transforms these gamma rays into a graphic readout so researchers can determine the type and quantity of elements inside the bomb.

Analysing the readout physicist Cyrille Eleon told Euronews: “We can see a peak here; that’s the carbon. The second peak indicates the presence of oxygen, and the software tells us the relationship between these two readings. If it reveals a potentially volatile ratio, like here, the system has identified that the object we are examining contains explosives.”

After a conclusive first test, the fake bomb is recovered and the submarine is safely towed back for some maintenance. Further tests will help to enhance its underwater mobility and data-acquisition accuracy.

Meanwhile in Poland, there is a very different border challenge.

Researchers are seeing if they can control the European Union’s land borders with the wheels of an autonomous, unarmed gamekeeper.

“The platform drives autonomously to the desired observation point. And the observation system is activated; radars, observation cameras are activated, so they can detect people who are trying to cross the border illegally,” said electronics and systems engineer Jakub Glowka.

Once the vehicle identifies any illegal action along the border, it raises the alarm, while at the same time providing its position and video data so appropriate action can be planned by border guards.

“The system is able to provide video data, including normal video footage but also infrared video, and data coming from radars. The main challenge that we faced was the integration inside the vehicle of complex elements like the autonomous driving system, autonomous tracking and detection of people and vehicles, and the sophisticated control and communication features of the whole system,” added Glowka.

Before going into action, the vehicle is programmed according to the specific weather and environment around the border that it has to survey.

“The platform has an obstacle detection system to avoid obstacles it can find on its way. The vehicle is also able to perform ‘path planning’ by itself. So it will not enter forbidden zones, for example, or it will be able to identify roads where it cannot go. Everything is based in data base systems that have been included in the vehicle,” said electrical engineer Alex Feldman.

Those database systems include accurate topographic simulations of the environment around.

For a series of tests in south-west Poland, 35 different computer-simulated elements were created by the developers.

“It includes topographic data and aerial data. For instance, information on surrounding buildings, its heights, water sources, agricultural areas, fences, trees, roads, buildings,” said remote sensing engineer Eija Parmes from Finland’s Technical Research Centre.

Topographic simulations, data from embedded cameras and radars, and autonomous navigation systems were then integrated into a single, easy-to-use tracking and control unit under the supervision of Polish and Turkish engineers.

“We have created an enormous architecture for this project. This framework allows us to control autonomous systems from one centre. the number isn’t important, we can handle several autonomous systems here,” said electronics engineer Abdullah Inle.

Researchers hope the autonomous technology will eventually be able to provide a less risky, more efficient and reliable way to survey challenging land borders.

 

Further information

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Futuris, the European research programme - on Euronews. The video on this page was prepared in collaboration with Euronews for the Futuris programme.

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center