Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belgium
  Benin
  Brazil
  Bulgaria
  Canada
  Chile
  China
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


This page was published on 02/06/2010
Published: 02/06/2010

   Success Stories

Last Update: 02-06-2010  
Related category(ies):
Energy  |  Industrial research

 

Countries involved in the project described in the article:
Belgium  |  Czech Republic  |  Poland  |  United Kingdom
Add to PDF "basket"

A tale of underground alchemy

In a coal mining area around Katowice in Southern Poland, a team of scientists have been set to work. However, rather than extracting coal, they are using a mine to experimentally assess an alternative method to energy production: introducing steam and oxygen to coal produces hydrogen. This experiment is being carried out as part of the EU research project HUGE (Hydrogen Oriented Underground Coal Gasification for Europe).

Video in QuickTime format:  ar  de  en  es  fr  it  pt  ru  tr  (20 MB)

Hydrogen can be used to power gas turbines, heat boilers and for a synthetic fuel. But its production in the depths of the coal pits is, at this experimental stage, complex and risky. Firstly, a tank delivers liquid oxygen to the site of the mine. The liquid oxygen is allowed to flow into a secure pool, where it expands and evaporates into a gas. Control valves guide the gas through pipes into the mine, direct to the coal deposits, where the gasification process begins.

The experiment is carefully monitored with sensors and underground cameras, on the search for irregularities. Monitoring methods are a vital part of the research; while the coal undergoes gasification various dangerous and explosive gases are produced. So measures must be taken to ensure that there are no explosions or leaking of dangerous gases.

Monitoring is also done from the surface by geologists and chemists, 25 metres above where the gasification occurs. The researchers want to be sure that gas does not leak through porous soil layers. They use a georadar to see if there are any structural changes in the underground cavity. They also check for possible gas leakages.

Another city with a long history of coal mining is Liege, in Belgium. It was here that coal gasification was investigated in a laboratory before beginning the full-scale experiment in Poland. The coal in a mine is not fully exposed, so to recreate the inside of a coal mine realistically, pieces of Polish coal were mixed up with a neutral material. The mix was then placed within the laboratory reactor, where different gases were introduced at different temperatures and pressures. These parameters control just what happens during the gasification process: for example, a higher pressure yields more methane, while a higher temperature yields more hydrogen and carbon monoxide.

The technique of chromatography was used to analyse the resulting gases. There are three types of coal gasification: gasification with carbon dioxide gives a gas high in carbon monoxide, gasification with steam gives a gas high in hydrogen, and gasification with hydrogen will produce a gas with a high methane content – forming the base of synthetic natural gas found in energy networks.

In Poland the experiment has been running successfully during a three week period. About 50 kg of coal has been gasified per hour without any traces of a dangerous leak. The researchers have been sampling and analysing the resulting hydrogen and other gases. Chromatography is used to identify the various gas components: carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and some pollutants, like sulphur compounds, for example.

Further research will most likely focus on improvements to increase the production rate of hydrogen and decrease the levels of dangerous gases. Gasification has the great advantage of also utilizing the smaller deposits of coal that are traditionally overlooked. This automatically increases the economic potential within a mine and could give new life to struggling coal regions within Europe. Furthermore, with less waste of coal, more energy will be produced in a more environmentally-friendly manner.

Further information

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Futuris, the European research programme - on Euronews. The video on this page was prepared in collaboration with Euronews for the Futuris programme.

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center