Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


This page was published on 01/08/2006
Published: 01/08/2006

   Success Stories

Published: 1 August 2006  
Related theme(s) and subtheme(s)
EnergyNuclear fusion
Add to PDF "basket"

Scientists ready for ITER startup

The Cadarache site in southeast France is preparing for the start-up of the ITER (International Thermonuclear Experimental Reactor) project. As its name states, ITER is a prototype reactor that will experiment under real conditions in generating energy from thermonuclear fusion.

Video in QuickTime format:  de  en  es  fr  it  pt  ru  (45 MB)

There are two types of nuclear reactions, fission and fusion. In nuclear fission, the nucleus of a heavy atom is split into several lighter nuclides. This releases neutrons and a large amount of energy. This process is used in nuclear power stations that operate on the basis of the fission of plutonium.

Nuclear fusion is still an experimental process: two atomic nuclei are brought together to form a heavier nucleus. Their fusion releases tremendous amounts of energy from the mass defect. For the nuclei to be able to join together, however, they must be in a state of extreme thermal agitation, meaning they are immersed in a "fusion plasma". This phenomenon occurs naturally in stars, especially in the sun, where hydrogen nuclei fuse to produce helium, releasing huge amounts of heat and light.

This reaction has been reproduced artificially for a number of years in laboratory conditions and military applications (the H bomb). But an experimental reactor had to be developed for fusion to be used to generate energy on an industrial scale. That is precisely the purpose of the ITER project, which will study on a large scale (500 MW) the scientific and technical feasibility of a reactor using Tokamak technology.

The benefits of this process for generating energy are that it releases no greenhouse gases; the basic fuel (deuterium, a hydrogen isotope) is an almost inexhaustible resource since it is available in sea water; and it involves no risk of environmental accidents. Another advantage is that fusion produces only 1/100th of the waste produced by fission and the waste has a much shorter life cycle.

This process for the future will be tested in Cadarache from 2016 in an international project bringing together scientific know-how from the European Union, Russia, China, the United States, India, Japan and South Korea.

Further information

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

The video on this page was prepared in collaboration with Euronews for the Futuris programme, also available as a podcast.

Contacts


Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center