New cameras to make X-rays safer for patients

CT scans have revolutionised the fight against human illness by creating three-dimensional images of the body's inner workings. Such scans, however, can deliver high doses of radiation. Now EU-funded researchers have built special cameras that limit radiation while delivering images vital for patient health.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 15 July 2019  
Related theme(s) and subtheme(s)
Health & life sciencesMajor diseases  |  Medical research  |  Public health
Innovation
Research policyHorizon 2020
SMEs
Countries involved in the project described in the article
France  |  Italy  |  Netherlands  |  Portugal  |  Spain
Add to PDF "basket"

New cameras to make X-rays safer for patients

Image

© Blue Planet Studio #162096679, source: stock.adobe.com 2019

Doctors have used computed tomography scans, or CT scans, to greatly improve the diagnosis and treatment of illnesses such as cancer and cardiovascular disease. But a major problem limits their use: they deliver high doses of radiation that can harm patients nearly as much as their ailment.

Enter the EU-funded VOXEL project which set out to develop an innovative way to create three-dimensional imaging. The result is special cameras that can deliver 3D images but without the high doses of radiation.

‘Reports show that in Germany in 2013, although CT scans only represented 7 % of all X-rays performed, they conveyed 60 % of the radiation that patients received,’ says Marta Fajardo, project coordinator and assistant professor at the Instituto Superior Técnico in Lisbon, Portugal. ‘We built several prototype cameras. As an alternative to CT, they enable 3D X-ray imagines in very few exposures, meaning less radiation for the patient.’

New perspective on 3D imaging

CT scans make images by taking thousands of flat, two-dimensional photos in order to reconstruct a 3D image. The problem is that each photo injects ionising radiation into the patient. As photos multiply, radiation levels rise.

To counter this, VOXEL’s breakthrough idea was to adapt a technique called plenoptic imaging to X-ray radiation. Plenoptic cameras capture information about the direction that light rays, including X-rays, are travelling in space, as opposed to a normal camera that captures only light intensity.

Because researchers can use the information about light direction captured by plenoptic cameras to reconstruct 3D images, there is no need to take thousands of 2D photos. Images of important structures like blood vessels can be made from a single exposure, lowering the average radiation dose significantly.

A major part of the work was using the right algorithms to manipulate the captured information. ‘First, we demonstrated that plenoptic imagining is mathematically equivalent to a limited-angle tomography problem,’ Fajardo says. ‘Then we could simply reformat plenoptic imaging as tomography data and apply image reconstruction algorithms to obtain much better images.’

But the biggest challenge remained engineering the cameras. ‘The higher the photon energy, the harder it is to manufacture the optics for a plenoptic camera,’ she says. ‘You need X-rays of different energies for different tasks.’ The solution was to develop one camera prototype that used lower-energy X-rays for tiny structures like cells and another that used higher-energy X-rays for larger objects, such as small animals or human organs.

Less radiation, healthier patients

While Fajardo is encouraged by the project’s results, work remains to be done. ‘The low-energy X-ray camera belongs to a niche market,’ she explains. ‘But the high-energy X-ray prototype has huge medical potential, although it still requires some development.’

Results from the project, which was awarded a Future Emerging Technologies grant, will soon be submitted for publication in the international science journal Nature Photonics.

Project details

  • Project acronym: VOXEL
  • Participants: Portugal (Coordinator), France, Spain, Netherlands, Italy
  • Project N°: 665207
  • Total costs: € 3 996 875
  • EU contribution: € 3 996 875
  • Duration: June 2015 to May 2019

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details