Versatile nanoparticles take aim at complex bone diseases

Multifunctional nanoparticles being developed by EU-funded researchers are set to revolutionise treatments for complex bone diseases, enabling novel therapies for hundreds of millions of people worldwide suffering from bone cancer, bacterial bone infections and osteoporosis.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 24 May 2019  
Related theme(s) and subtheme(s)
Health & life sciencesHealth & ageing  |  Major diseases  |  Medical research  |  Public health
Innovation
NanotechnologyNanomedicine
Research policyHorizon 2020
Countries involved in the project described in the article
Spain
Add to PDF "basket"

Versatile nanoparticles take aim at complex bone diseases

image

© crevis #128396472, 2019 source: stock.adobe.com

Diseases such as bone cancer and osteoporosis are frequently complex, with two or more disorders occurring simultaneously. To address the associated treatment challenges, the EU-funded VERDI project is developing an innovative multifunctional nanoplatform that would be capable of healing a number of currently hard-to-treat bone diseases using a unique, versatile and scalable system.

Led by Maria Vallet-Regi at the Universidad Complutense de Madrid in Spain, the project marks a significant milestone on the path to effectively deploying nanotechnology-based treatments in healthcare.

‘The idea is to create a toolbox in order to be able to select the appropriate building blocks of therapeutic agents and targeting mechanisms according to the disease being treated. This will enable us to customise nanoparticles specifically for each bone pathology, allowing the creation of a library of nanomedicines suitable for clinical trials and eventually clinical use,’ Vallet-Regi says.

Activated by a doctor

Using the toolbox, doctors would be able to deploy nanoparticles of mesoporous silica, a robust and versatile nanomaterial, as customisable carriers for treatments, such as antibiotics to treat infections or proteolytic enzymes to break up cancer cells.

These nanoparticles would then be injected into the patient, find their way to the afflicted area and be activated – providing targeted, effective therapy with lower toxicity and fewer side effects for people suffering from bone cancers, bacterial infections or bone density loss caused by osteoporosis.

Crucially, the nanoparticles carrying therapeutic agents must reach their targets, which requires the development and incorporation of compounds capable of targeting specific cells and penetrating cell walls or traversing the biofilms created by bacteria. The nanoparticles can then be activated by a doctor to release their load of therapeutic agents directly at the site of the diseased bone using external stimuli such as ultrasound, ultraviolet light or magnetic signals.

To treat osteoporosis, a degenerative bone disease estimated to affect 200 million people worldwide, the VERDI team is planning to use the nanoparticles to deliver molecules capable of silencing certain genes associated with the disease in order to limit bone loss and promote bone formation. The nanoparticles will be designed with unique masking properties to enable them to penetrate the cell membrane and reach the cytoplasm inside. Early tests of a similar nanosystem in animal models in a separate project led by Vallet-Regi have already had highly promising results, demonstrating the accumulation of therapeutic nanoparticles at the site of neuroblastomas, a cancer that affects nerve tissue.

From research to healthcare

‘The challenges we are addressing are immensely varied, since we are tackling three different bone pathologies each with its own peculiarities,’ Vallet-Regi explains. ‘For example, in bone cancer we find heterogeneous tumour cells difficult to treat with only one drug; in bone infection, bacteria develop a biofilm that impedes antibiotics from reaching their target; and in osteoporosis we must deal with accelerated resorption, the breakdown of bone tissue.’

The researchers have filed two patents for their technology so far and are preparing to conduct clinical studies of the nanoplatform over the coming years, aiming for the eventual commercialisation of the system and its deployment in clinical therapy.

‘The development of a single technology for the treatment of three different but frequently associated diseases, particularly among elderly people, will favour the industrial scale-up process, promoting the transition of nanotechnology-based treatments from research to healthcare,’ Vallet-Regi says.

Project details

  • Project acronym: VERDI
  • Participants: Spain (Coordinator)
  • Project N°: 694160
  • Total costs: € 2 500 000
  • EU contribution: € 2 500 000
  • Duration: October 2016 to September 2021

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details