Faster rare anaemia research

An EU-funded project has developed a blood-cell analysis device that helps doctors and scientists better understand the causes and mechanics of rare forms of anaemia - potentially speeding up the development of new treatments adjusted to the needs of patients with these diseases.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 25 April 2019  
Related theme(s) and subtheme(s)
Health & life sciencesHealth & special needs  |  Medical research  |  Rare & orphan diseases
Human resources & mobilityMarie Curie Actions
Industrial researchMaterials & products
Innovation
Research policySeventh Framework Programme
Countries involved in the project described in the article
Denmark  |  Germany  |  Netherlands  |  Spain  |  Switzerland  |  United Kingdom
Add to PDF "basket"

Faster rare anaemia research

image

© vchalup #102621276, 2019 source: stock.adobe.com

For most people with anaemia, symptoms of tiredness and shortness of breath can be treated with iron supplements which enable their red blood cells to better transport oxygen to their organs. People with rare anaemias – which can be painful or even fatal – can require more extreme treatment such as spleen removal. For some patients with these rare types, no treatments are available because the causes and mechanics of their disease are still unknown.

The EU-funded COMMITMENT project has developed a prototype device, MeCheM, that can quickly analyse a few drops of blood from a person with a rare anaemia to show how the diseased blood cells function and interact with other cells. This can assist doctors in better diagnosing and monitoring a rare anaemia and help researchers to develop non-invasive, drug-based treatments.

The project has already identified molecular symptoms shared between some rare anaemias, which could make future drug development more cost effective. It has also helped to test a promising treatment for sickle cell disease, a hereditary, severe anaemia.

‘There is a need for this technology in hospitals where there are no special haematology centres and for academic research,’ says project coordinator Lars Kaestner of the Universität des Saarlandes in Germany.

Easy, cheap, non-invasive

Targeted analysis is at the heart of the innovative device. ‘Blood cell numbers are so high that if only 1 % of cells are affected they are difficult to spot in traditional screening,’ Kaestner explains. ‘Nevertheless, these cells still have an adverse impact on the patient. Our approach is to look at individual cells.’

MeCheM processes blood through microchannels and reservoirs to separate out anaemic blood cells. An optical screening method then analyses how these cells respond to mechanical deformation and chemicals. This allows researchers and clinicians to better understand how rare anaemias work, to monitor the disease and to match a drug to a possible group of patients.

‘Our method allows a very patient-specific diagnosis that is easy, cheap and non-invasive. It allows doctors to see whether a patient needs medication and to what extent. It is a step towards the goal of personalised medicine,’ Kaestner adds.

Risk support pays

Five companies and four research organisations took part in the project, working closely with the European Network for Rare and Congenital Anaemias. Together, they chose a shortlist of anaemias to investigate and devised study protocols to gain an overall picture of blood-cell behaviour.

Next, the partners started to design an analysis device and apply its results. Although the project initially worked towards a more complex machine, this failed in further development. Instead, COMMITMENT developed MeCheM.

Kaestner credits the EU funding for their ability to make the change. ‘The EU funds “risky” projects, so we could stay flexible in what we were doing. And although part of our technology did not work, we also had [positive] results that we did not plan.’

MeCheM has been patented and is in prototype testing, adds Kaestner. He hopes that one day doctors will be able to use its methods as part of their routine diagnosis of patients.

He adds that the device contributes to the goal of the International Rare Diseases Research Consortium to develop new kinds of diagnosis and 200 new therapies for rare diseases by 2020.

Meanwhile, the project results have been presented at scientific meetings and in scientific journals and will continue to be published in 2019. COMMITMENT technology and results are also being used to train PhD students to develop medical applications of red-blood-cell behaviour, in a follow-on Marie Skłodowska-Curie training network, RELEVANCE.

Project details

  • Project acronym: COMMITMENT
  • Participants: Germany (Coordinator), Switzerland, Netherlands, Denmark, UK, Spain
  • Project N°: 602121
  • Total costs: € 7 724 726
  • EU contribution: € 5 999 982
  • Duration: October 2013 to September 2018

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details