Improving disease detection through ultra-high-field MRIs

The widespread adoption of magnetic resonance imaging (MRI) revolutionised clinical medicine, and the revolution has not stopped. Scientists in an EU-funded project are exploring ways to make MRIs even more effective - aiming to help patients get the best possible treatment through early disease detection.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 16 April 2019  
Related theme(s) and subtheme(s)
Health & life sciencesMajor diseases  |  Medical research  |  Public health
Industrial researchMaterials & products
Innovation
International cooperation
Research policyHorizon 2020
Countries involved in the project described in the article
Australia  |  Belgium  |  Finland  |  France  |  Netherlands  |  Russia  |  Switzerland
Add to PDF "basket"

Improving disease detection through ultra-high-field MRIs

Image

© zinkevych #144210162, 2019 source: stock.adobe.com

For all its merits, MRI clinical imaging has limits that can hinder the quick and effective diagnosis of health problems in patients. For example, typical low-power (or ‘low-field’) MRIs produce reduced spatial and temporal image resolutions that can make it hard for medical practitioners to spot developing diseases.

‘Ultra-high-field’ MRIs – or scanners that produce more intense magnetic fields – can create more accurate and useful images. But their everyday use remains limited, in part because using conventional materials to produce stronger fields is a complex, expensive, and potentially hazardous task. For example, using too much power could overheat scanned bodily tissues, causing cellular damage.

The M-CUBE project aims to solve this problem through the use of ‘metamaterials’ in MRI scanners. Metamaterials are materials engineered to have artificial properties that natural materials cannot possess. For example, advanced metamaterials could help to create ‘super lenses’ that make images of small or far-away objects that are sharper than ever before possible.

The project’s main mission is to develop a metamaterial antenna technology that will allow scientists to manipulate electromagnetic waves at will while scanning a patient’s body. Scanners will be more powerful but also more sensitive, avoiding the risk of overheating faced by conventional high-powered MRIs.

In practice, such technology will make it easier for physicians to use high-field MRIs in their clinics with the potential to dramatically improve patient health.

M-CUBE has gathered an interdisciplinary consortium of eight universities, academic leaders, and two small-to-medium enterprises (SMEs). Its members include physicists, medical doctors and industrial actors all working together.

Preclinical and clinical tests with volunteers will validate M-CUBE’s results. The project’s successful conclusion will pave the way for more accurate diagnoses and earlier disease detection.

Project details

  • Project acronym: M-CUBE
  • Participants: France (Coordinator), Belgium, Netherlands, Finland, Russia, Australia, Switzerland
  • Project N°: 736937
  • Total costs: € 4 582 346
  • EU contribution: € 3 945 346
  • Duration: January 2017 to December 2020

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details