New breast screening technology can spot hidden cancer tumours

An EU-funded project has advanced breast cancer detection to uncover tumours that are difficult to spot and frequently missed by current technology. The technology could help to save lives and avoid unnecessary biopsies.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Bosnia and Herzegovina
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czechia
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 18 July 2018  
Related theme(s) and subtheme(s)
Health & life sciencesMedical research  |  Public health
Innovation
NanotechnologyNanomedicine
Research policySeventh Framework Programme
Special CollectionsCancer
Countries involved in the project described in the article
Netherlands
Add to PDF "basket"

New breast screening technology can spot hidden cancer tumours

Image

© Syda Productions #176414949, source: fotolia.com, 2018

Breast cancer is the most common form of cancer among women, accounting for 25 % of all cancer cases worldwide. Much progress has been made in detecting breast tumours, and survival rates are relatively high compared to other forms of cancer.

However, some breast lesions have subtleties that are difficult to detect, increasing the likelihood that they will prove fatal. The EU-funded project MAMMA has developed a new way to uncover these more complex tumours.

The project has designed an intelligent computer-assisted system for detecting and diagnosing problematic breast lesions that will help save lives by cutting the number of missed or misinterpreted cases. Its researchers also hope to reduce the need for unnecessary biopsies.

“The project’s research enables the translation of novel and complex image-processing algorithms to quantify the features of suspicious lesions into prognostic markers of the progression of lethal, invasive cancers. This technology can save lives, reduce misdiagnosis and improve the quality of life for millions of women worldwide,” says project coordinator Anke Meyer-Baese of Florida State University and an affiliated professor at Maastricht University in the Netherlands.

Better software, better detection

A technique known as ‘Breast Imaging-Reporting and Data System (BI-RADS) descriptors’ is currently used to assess breast tumours in mammography. However, it is known to fail to correctly assess lesions that are difficult to diagnose, for example when the boundary between the tumour and background tissue is difficult to detect.

“These lesions exhibit heterogeneous behaviour and cannot be characterised solely based on their tumour shape or contrast-enhancing behaviour. While their shape mimics a benign tumour, their contrast-enhancement uptake is of malignant nature and vice versa,” says Meyer-Baese.

This particular type of tumour poses an enormous challenge for both radiologists and the current computer-assisted evaluation systems that have the potential to reduce human error in cancer diagnosis.

Throughout the project, MAMMA developed software used spatiotemporal descriptors to capture the shape and contrast-enhanced behaviour of diagnostically challenging lesions. The team also used a novel computational approach – called radiomics – to represent oncological tissues.

“Integrated in a radiomics approach, the new spatiotemporal descriptors showed superior capabilities for the detection and diagnosis of diagnostically challenging lesions compared to the standard BI-RADS descriptors,” says Meyer-Baese.

Personalised medicine

In line with the growing importance of personalised medicine, the technology has developed treatment strategies able to respond to the specific characteristics of each patient and each cancer type. Furthermore, the software will provide tailored cancer management strategies for patients diagnosed with early-stage breast cancer.

Moreover, novel computer-assisted diagnostics for diagnostically challenging lesions will help cut costs. The technology can distinguish lethal from non-lethal cancer, avoiding over-diagnosis, unnecessary treatment and associated costs, as well as needless patient anxiety.

With the project successfully completed, Meyer-Baese says that the next step could be to apply MAMMA’s new technology to other cancers like prostate cancer.

Project details

  • Project acronym: MAMMA
  • Participants: Netherlands (Coordinator)
  • Project N°: 628919
  • Total costs: € 243 847
  • EU contribution: € 243 847
  • Duration: April 2014 to March 2016

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project details