Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia


   Infocentre

Published: 19 April 2017  
Related theme(s) and subtheme(s)
EnergyRational energy use  |  Renewable energy sources
Environment
Innovation
Research policyHorizon 2020
Countries involved in the project described in the article
Belgium  |  France  |  Germany  |  Morocco  |  Spain  |  Switzerland  |  United Kingdom
Add to PDF "basket"

Harnessing the sun to clean up industrial processes

The production of cement and lime involves fossil fuels and produces harmful greenhouse gases. Industry could change this, if scientists can develop a technology that can use solar power for high temperature industrial processes. The EU-funded SOLPART project has built lab-scale reactors that use a solar powered process to meet this need.

Image of solar home battery concept

© mipan - fotolia.com

When we think of CO2 emissions, we tend to think of power stations, electricity and hundreds of thousands of vehicles pumping out harmful pollution. But other industries also pump tonnes of CO2 out into the atmosphere each year. One of these is the construction industry, which produces the lime used in large quantities in limestone products, cement, concrete, and mortar.

The construction industry is not far behind energy producers, households and the transport industry in terms of how much CO2 it produces. “In fact, the cement industry is responsible for between 5 and 6 % of the world’s CO2 emissions each year (about 1 tonne/CO2 per tonne of clinker),” reports SOLPART project coordinator Gilles Flamant.

“The SOLPART project’s high-temperature solar process could significantly cut CO2 emissions and fuel consumption, while saving companies money,” emphasises Flamant. “The use of solar power in the cement and lime production process would save about 0.15 litres of fuel per kilogram of lime produced,” he adds.

How it works – chemical processes driven by solar energy

Utility providers already use concentrated solar energy to produce electricity and heat, but solar power heats water in homes at less than 100 °C. “The SOLPART project wants to take the efficiency of solar power to much higher temperatures – between 900 and 950 °C,” explains Flamant. High-temperature processes could be used to produce carbonate particles from limestone, which is essentially calcium carbonate.

To produce lime for use in the cement industry, industries must heat the limestone to 900 – 1000 °C to break it down. The heat causes the limestone (CaCO3(s)) to lose carbon dioxide (CO2(g)) and turns it into quicklime – calcium oxide (CaO(s)). Industry typically burns fuel to achieve such high temperatures, but this produces greenhouse gas emissions.

The project aims to replace the fuel used in this process (which are responsible for 40 % of total CO2 emissions) with solar heat. “Even though less emissions are produced in the cement production process, using a solar process to produce cement would reduce CO2 emissions by as much as 20 %,” he points out.

The technology – building and testing solar reactors

For this high-temperature chemical reaction to take place, scientists need the right equipment. As part of the project, scientists have already constructed two laboratory-scale solar reactors to break down calcium carbonate in lime and cement production. The rotary kiln is in Germany (DLR) and the fluidised bed reactor is in France (CNRS). In the SOLPART concept, the solar reactor supplies hot reacted particles to a particle storage container to simulate the industrial process operating 24 hours a day.

“Laboratory testing of these 10 KiloWatt reactors has started and will continue over the course of 2017,” says Flamant. Once the testing process is complete, the project team will decide which reactor to scale up for the next phase of the project. The next reactor will be between three and five times bigger than the current laboratory reactors.

Once work in the SOLPART project is complete, scientists could start building an industrial pilot with a 500 KiloWatt to 1 MegaWatt reactor in a follow on project. This would enable them to use and integrate solar technology into the large-scale production of cement and lime, and possibly even other materials.

Project details

  • Project acronym: SOLPART
  • Participants: France (Coordinator), Switzerland, Germany, Spain, UK, Belgium, Morocco
  • Project N°: 654663
  • Total costs: € 4 558 687
  • EU contribution: € 4 366 562
  • Duration: January 2016 - December 2019

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details


  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia