Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 2 December 2015  
Related category(ies):
Energy  |  Environment

 

Countries involved in the project described in the article:
Austria  |  France  |  Germany  |  Netherlands  |  Poland
Add to PDF "basket"

Energy mix models make a case for more ambitious renewable targets

Using sensors on board platforms such as satellites and advanced modelling systems, EU-funded researchers have quantified the impact of future energy use on the environment. Their headline conclusion? That we can go further than the EU goal of increasing renewable energy's contribution to global supply to 80% by 2050.

Photo of the satelite over the earth

© tsuneomp - Fotolia.com

The production, transport and consumption of energy all put considerable pressure on the environment. If we were to make changes to our energy mix, for example by relying more on biomass, solar or wind energy, what would the impact be? Would it impact air pollution or human health? What about ecosystems, fresh water systems or the biosphere? The EnerGEO project designed and built a system to evaluate this.

The team started by linking environmental observation systems already under the umbrella of the Global Earth Observation System of Systems (GEOSS) with new energy models developed during the project.

Linking systems and semantics

One of the major challenges for EnerGEO was to connect a variety of observation systems, each focused on a very specific environmental question, with a large array of energy resources that have widely different impacts on the environment.

Finding a way for experts from very different specialisations to work together went some way towards solving this, explains EnerGEO coordinator Martijn Schaap of the Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO) in the Netherlands: “People came from different backgrounds, which meant they were not talking the same language. We had to connect certain parts and understand how we could use each other’s expertise.”

By linking observation data and energy models, it is possible, for example, to have an idea of how much biomass is available, and then to estimate how much could be harvested. This, in turn, indicates how much energy could be produced from biomass.

EnerGEO also worked with data on air pollution trends and the presence of pollutants such as carbon monoxide and nitrogen dioxide.

Energy scenarios

Once the data had been connected to the team’s models, the whole system was applied to four scenarios:

  • ‘Baseline’ – current EU policies on limiting CO2 remain as they are;
  • ‘Open Europe’ – solar energy is imported to Europe from North Africa, the share of energy provided by biomass is high and nuclear energy is phased out;
  • ‘Island Europe’ – no electricity is imported from outside of Europe, renewable energy use is equal to or higher than that in the ‘Open Europe’ scenario and nuclear energy use continues;
  • ‘Maximum Renewable Energy’ – renewable energy penetration is close to 100%.

Testing these scenarios showed that the potential of wind, solar and biomass energy would make it possible to increase the share of energy from renewable sources by more than is currently targeted. “The targets can be more ambitious than the EU 80% target,” confirms Schaap.

Impact on air quality – a victim of today’s high fossil fuel use – was another project focus; the findings make the case for a rigorous climate policy to control air pollution, says Schaap: “If you have a stringent climate policy, it will have a significant impact on air quality. But if you focus on air quality, you won’t necessarily meet climate change goals.”

The third key finding was confirmation that earth observation data can indeed be used to create spatial maps illustrating renewable energy potential. These would be useful for engineering consultants looking for the optimal location for new infrastructure, such as solar panels.

Many of the EnerGEO project partners are now working with the new modelling systems while continuing to develop them. Although no follow-up project is currently planned, Schaap would be keen to expand the EnerGEO system geographically and to other energy sources, such as geothermal and tidal energy, and to expand beyond electricity production. He also has further scenarios in mind for testing, including the impact of higher electric vehicle usage on electricity demand and consequent shifts in environmental impacts.

Project details

  • Project acronym: ENERGEO
  • Participants: Netherlands (Coordinator), France, Germany, Austria, Poland
  • Project reference: 226364
  • Total cost: € 7 866 511
  • EU contribution: € 6 010 977
  • Duration: November 2009 - October 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project Website
Project information on CORDIS






  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece