Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 7 October 2015  
Related theme(s) and subtheme(s)
EnvironmentClean technology and recycling
NanotechnologyNanomaterials
Countries involved in the project described in the article
Belgium  |  Denmark  |  Germany  |  Italy  |  Spain  |  Sweden
Add to PDF "basket"

Functional nanostructures for plastic - a manufacturing breakthrough

An EU-funded project has developed moulds capable of embedding nanostructures onto the surface of plastic parts. This innovation could help carmakers and other industries using plastics improve their manufacturing processes and products - boosting competitiveness.

Image of the car interior

© esdras700 - fotolia.com

“At the moment, a car part like an anti-fog light achieves anti-glare properties by being coated in a chemical film, which is expensive and wears off,” explains Anders Kristensen, project coordinator of the EU-funded PLAST4FUTURE project and a professor at the Technical University of Denmark.

“The same goes for anti-glare reading glasses. What we’ve done is achieve the same functionality by applying nanostructures directly onto the surface of this part through advanced injection plastic moulding, removing the need to apply an additional coating.”

Manufacturers would also be able to use nanostructures to colour plastics without the need to add pigments or film, he adds. This phenomenon can be found in nature: for example, the wings of the brilliant blue morpho butterfly achieve their intensity because nanoscale structures interfere with light in particular way.

Similarly, the PLAST4FUTURE team has been able to show that plastic can be injection moulded in such a way that light is reflected off the nanostructured surface to give a particular colour. This means colour functionality has been achieved during production of the plastic part – colour does not have to be added at a later stage.

How industry benefits

“Innovation has been achieved all along the value chain, beginning with the steel injection moulding tools used in plastic manufacturing,” says Kristensen. “The semiconductor industry has for years used state-of-the-art etching to add functionality to silicon surfaces. The project took this as the starting point and adapted semiconductor etching technology for shaping plastic objects.”

The project then developed hard and durable moulds with just the right properties for etching, while new production tools were also developed by SME project partners. “The SMEs behind the new steel moulds have just taken their first orders,” adds Kristensen.

Next, a novel surface polishing process was integrated into a milling machine for automated robotic polishing. The mould surface must be smooth to the nanometre level for nanostructure functionalities to be embedded.

As Kristensen points out, companies involved in designing injection moulds are potential end users of this technology as much plastics manufacturers. One of the project’s key aims is to create demand for advanced nanotech moulds.

The project also follows the ‘cradle to cradle’ philosophy of production – using nanostructures makes products and parts easier to recycle.

“Think of it this way,” says Kristensen. “If you have red and blue plastic pen cylinders that you want to recycle you would first have to sort them out by colour. However, if both sets of cylinders are made from exactly the same material and the colour is simply caused by light reflecting the surface texture, then you would simply just grind them down, melt them and pour back into the mould, making them cheaper and more efficient to recycle.”

The consortium is already looking to the future. Some members of the team recently joined forces with another EU-funded project to secure funding for a project under the Horizon 2020 programme.

“The aim of this is to take our project to the next level and combine plastic and composite materials in order to deliver real products and car parts,” says Kristensen.

Project details

  • Project acronym: PLAST4FUTURE
  • Participants: Denmark (Coordinator), Italy, Sweden, Belgium, Spain, Germany
  • Project reference: 314345
  • Total cost: € 9 547 981
  • EU contribution: € 6 000 000
  • Duration: January 2013 - December 2015

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project Website
Project information on CORDIS






  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece