Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 22-05-2014  
Related category(ies):
Energy  |  Industrial research  |  International cooperation  |  Environment  |  Nanotechnology

 

Countries involved in the project described in the article:
France  |  Germany  |  Greece  |  Italy  |  Korea  |  Norway
Add to PDF "basket"

Europe and South Korea's nanotechnology boost to the hydrogen economy

Burning with an energy density three times greater than fossil fuels but without producing carbon dioxide, hydrogen has obvious environmental credentials. Until now, hydrogen's rollout as a next-generation clean energy source has been hampered by the question of how to store it: as the lightest element, it needs to be kept at high density.

Photo of Hydrogen containers

© victorhabbick fotolia

A European and South Korean research project harnessing nanotechnology developed novel materials to store the hydrogen, offering the hope that its use can become more widespread.

The project, NANOHy, produced theoretical modelling, synthesis, characterisation and testing of novel nanocomposite materials for hydrogen storage. It combined the latest developments in metal hydrides - metals bonded to hydrogen to form a new compound - with novel concepts for tailoring material properties.

“With the results of NANOHy the development of hydrogen storage materials made a step forward,” says NANOHy’s coordinator, Maximilian Fichtner from the Karlsruhe Institute of Technology (KIT), Germany. “Our breakthrough in the field of nanoscale energy materials was an important piece of the puzzle. However, the general problem of providing efficient and safe storage of hydrogen in pressurized, liquid, or solid form remains to be solved,” he adds.

The experimental work focused on the synthesis of the starting materials, namely the nanocarbons that serve as scaffolds and complex hydrides that are integrated into the scaffolds in order to form nanocomposites. The synthesis procedures worked for both materials, and in total several 100g of carbon templates (or frameworks for the structure), and about 100g of complex hydrides were produced.

The project team worked on developing intriguing concepts at the nanoscale, including self-assembled polymer layers, which are layers that form automatically at the surface of a particle through electrostatic forces. Fichtner says the project also stimulated other research groups and led to follow-up activities in this exciting area. “We found that research can be transferred to other areas such as the development of battery materials where it has become an increasing issue to develop materials with higher storage capacities, better safety and improved life cycle,” he says.

One of the project partners, Young Whan Cho from the South Korean Institute of Science and Technology (KIST), helped the project team by offering complementary research on nanotechnology structural concepts. Young says that, although there are still hurdles to be overcome before the research can be commercialised, NANOHy met most of its goals. “If we develop a reliable and economical hydrogen storage technology, the commercialisation of carbon-free fuel cell cars could become a reality in the near future,” he explains. “That would mean the cost of the electricity distribution from renewable energy sources will be significantly reduced,” he adds.

More broadly, the research has led to a better understanding of hydrogen storage materials at nanoscale. “We know now how to prepare such systems, how to research them and how a selected system behaves in a laboratory tank,” says Fichtner. “Nanoscale systems are – in general – present in almost every part of our daily life and it is expected that energy storage systems will be based on nanoscale materials due to their improved properties,” concludes Fichtner.

 

Project details

  • Project acronym: NANOHY
  • Participants:Germany (Coordinator), Greece, Italy, Korea, Germany, France, Norway
  • Project FP7 210092
  • Total costs: € 3 402 945
  • EU contribution: € 2 399 629
  • Duration: January 2008 - December 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project web site
Project information on CORDIS






  Top   Research Information Center