Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Environment

Last Update: 14-05-2014  
Related category(ies):
International cooperation  |  Special Collections  |  Environment

 

Countries involved in the project described in the article:
Ghana  |  Israel  |  Italy  |  Netherlands  |  South Africa  |  Spain  |  Tunisia
Add to PDF "basket"

Tapping into a new source of water - flue gas.

What does a coal-fired power plant produce? Well, electricity, of course, but it could also supply clean water. And so could many other types of factory. Technology developed by the EU-funded CapWa project extracts water from flue gas - more, in some cases, than was initially brought in. It also saves energy.

Picture of flue gas

© verdateo fotolia

Considering how many industrial processes use water that is eventually released as vapour, this advance could help whole sectors of the economy to avoid precious resources going up in smoke.

For the average coal-fired power plant, for example, the technology can extract more water than the plant can reuse, turning it from a consumer into a producer. This is due the fact that the plant ‘exhales’ a substantial amount of vapour.

“There is a lot of water in flue gas,” says project coordinator Ludwin Daal of DNV GL – Energy, formerly known as KEMA. “For a typical coal-fired power plant of 400 MW, there is about 150 cubic metres of water coming out per hour, and you only need about 20 % of that to make the plant self-sufficient.”

Recovering water from flue gas also helps to save energy, as it dispenses with the need to heat the gas to reduce corrosion in the stack. And in some cases, the de-watered warm air can actually be reinjected into the process.

These energy savings are, in fact, one of the main reasons why the technology quickly pays for itself. A paper production plant, says Daal, could expect return on investment within a year or two.

Waste not, want not

It’s an attractive prospect. If Europe’s power plants and paper factories combined were to adopt this technology, for example, they could provide water for two million households per year and save energy worth the annual consumption of three million homes, according to CapWa’s estimates.

Advances such as these do not materialise out of thin air. CapWa involved partners from Europe and beyond, bringing together a wide range of complementary skills towards a shared objective. Together, they upgraded and refined technology conceived several years earlier by lead partner DNV GL – Energy.

This teamwork, a cornerstone of EU-funded research, is truly unique, says Daal. Other parts of the world, he notes, “don’t have this approach of different ideas, different cultures all brought together and working as one”. Without it, he adds, these outcomes could not have been achieved.

Vapour abhors a vacuum

The resulting application is based on innovative hollow fibre membranes with a selective outer layer. Arrays of these tubes are placed into a humid gas stream. A vacuum maintained inside the tubes enables the arrays to suck water out the gas: the difference in pressure draws the molecules composing the air stream towards the vacuum, but the membranes’ selective coating will only let water molecules through.

The result is surprisingly clean water, extracted in a single step. This can be used for a variety of purposes, notably as high-purity boiler feed water.

The next stage in the deployment of this technology, says Daal, would be application in two or three large-scale demonstration sites, followed by commercialisation through a systems integrator. There is considerable interest from water-scarce areas around the world, notably in Africa, the Americas, Australia and China. But they are not the only ones who might benefit: given the potential of this elegant solution, clients in water-rich areas are also likely to take advantage of the technology.

 

Project details

  • Project acronym: CAPWA
  • Participants: Nederlands (Coordinator), Germany, Italy, South Africa, Israel, Tunisia, Ghana, Spain
  • Project FP7 246074
  • Total costs: € 5 768 329
  • EU contribution: € 3 588 140
  • Duration: September 2010 - August 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project web site
Project information on CORDIS






  Top   Research Information Center