Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 23-04-2014  
Related category(ies):
Health & life sciences  |  Industrial research  |  Environment

 

Countries involved in the project described in the article:
Belgium  |  Germany  |  Ireland  |  Italy  |  Portugal  |  Romania  |  Spain  |  Swaziland  |  Sweden  |  United Kingdom
Add to PDF "basket"

New surgical breakthrough in repairing damaged spinal discs

Lower-back pain due to damaged spinal discs is a major cause of long-term disability for millions of people. Seeking a cure, EU-funded researchers have developed a new surgical approach and the materials to repair damaged spinal discs, potentially helping many sufferers enjoy better, more productive lives.

image of human spine as a puzzle

© freshidea fotolia

Some 30 % of European workers suffer from back pain, the top work-related disorder reported by the European Agency for Safety and Health at Work. The human cost of this suffering in terms of lost wages, and the economic consequences in healthcare spending, are both exorbitantly high.

In response, researchers in the DISC REGENERATION project have developed a solution for those with damaged spinal discs, the predominant cause of severe and lasting back pain. They have developed a new surgical approach and the necessary materials that enable surgeons to repair damaged intervertebral discs.

The team used modelling to determine the complexity of the stresses placed on the human vertebral disc and then calculated the bio-active repair capability needed for any replacement. Following this work, they developed suitable materials for both the hard outer element of the disc (the annulus) and the soft, gel-like inner core (the nucleus). They then worked out how to inject both types of material with the minimum of invasive surgery, and how to seal the disk afterwards.

Specialised treatment

Back pain from spinal-disc problems has to be treated in different ways. Younger people with sports-derived injuries may be able to recover to some extent via the body's own natural healing process. But when the problem is due to disc degeneration, as is common in older people, the repair process has to be helped.

Which is why the team developed two different types of injectable gels for the soft inner core, the nucleus, of the spinal disc. While both are bio-hybrid structures that closely resemble the human tissue in its essential attributes, there are differences.

The first gel type, designed for use with patients up to the ages of 40 to 50, is loaded with live human cells, and is suited to those vertebral disks that still have the ability to self-repair to some extent.

The second gel type has no live cells, and instead is made of gellan gum and esters of hyaluronic acid components. This second type is designed for patients over 50, whose spinal cells are less able to repair and regenerate themselves. The gell also includes a growth component to help regenerate the disc nucleus.

Cooperation and expertise

Project coordinator Professor Luigi Ambrosio of Italy's National Research Council (CNR) is proud of the team's success in reaching project targets.

“There is no one single achievement I would emphasise,” he says, “but it is the integration of all the different expertise and techniques that went so well … the image analysis, the materials technology, the cellular structures, the bio-active compounds, the surgery, the injection method and a custom approach for partial and total disc replacements. What we have achieved is a real step forward in treating spinal-disc problems.”

The concepts, materials and surgical practices developed by the DISC REGENERATION project are still relatively new developments in medicine. “Spine-motion preservation” is an emerging technology, and the next step will be to undertake a full-scale clinical trial.

If the techniques developed within the project prove successful with living patients, then they could not only relieve back pain for many, but also become one of the strongest market opportunities in the European medical-technology industry.

 

Project details

  • Project acronym: DISC REGENERATION
  • Participants: Italy (Coordinator), Ireland, UK, Spain, Portugal, Germany, Sweden, Belgium, Romania, Switzerland
  • Project FP7 213904
  • Total costs: € 9 422 854
  • EU contribution: € 6 977 150
  • Duration: November 2008 - October 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project web site
Project information on CORDIS






  Top   Research Information Center