Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 09-04-2014  
Related category(ies):
Agriculture & food  |  Health & life sciences  |  Environment

 

Countries involved in the project described in the article:
Ireland
Add to PDF "basket"

How plants evolved and what it means for our food supply

An EU-funded project investigating how oxygen in the air millions of years ago might have affected the evolution of plants is making important discoveries that could inform our approach to climate change, space exploration and ensuring future food supplies.

Photo of a basket full of vegetables
© Rémy MASSEGLIA fotolia

Today, scientists in areas as varied as food security, climate change and space exploration need to know more about plants – how they live and grow and what effect environmental conditions can have on them. A key part of understanding plants is knowing how they evolved.

The EU-funded OXYEVOL project is investigating how variations in atmospheric oxygen levels over millions of years might have affected the appearance of new plant species.

“We are exploring the relationship between oxygen concentration and plant evolution,” says University College Dublin’s Prof. Jennifer McElwain, who received a European Research Council Starting Grant to undertake the project.

OXYEVOL’s researchers are looking closely at the plant fossil record and comparing it to the known history of atmospheric oxygen content. Meanwhile, they are also undertaking a series of highly novel ‘mini-world’ experiments, in which living plant species with diverse evolutionary histories are being exposed to different atmospheric oxygen and carbon dioxide concentrations in a growth chamber.

The most significant result so far is the observation that greater numbers of plant species seem to have originated when atmospheric oxygen concentrations were highest.

We already know that the appearance of complex organisms over a billion years ago was linked to a rise in atmospheric oxygen levels. OXYEVOL’s results suggest that oxygen has also been an important evolutionary driver for plants, as important perhaps as it was for the evolution of mammals.

Broader relevance

OXYEVOL is aimed at helping scientists understand the environment and the living organisms around us. Fundamental research of this type can be driven by the simple desire to know, but throughout history, ‘science for science’s sake’ has also led to important discoveries that can have a real effect on our daily lives.

For example, McElwain says: “A major challenge for the society of the future will be food production for an ever increasing population. The early results of our experiments could help direct future strategies for enhanced agricultural crops.”

Meanwhile, she says, the project’s studies of plants in super-elevated CO2 atmospheres will provide critical information on possible feedback effects of vegetation on the climate system, at a time when atmospheric CO2 is rising at the highest rate in the Earth’s history.

Finally, OXYEVOL could even have an impact on the cultivation of plants in space.

“The human exploration of planets like Mars,” she says, “will require a certain level of self-sufficiency, meaning food production will have to be undertaken during long space flights. Our experiments could help us better understand how to do this.”

The project has already made a real contribution in terms of education, providing downloadable course materials on plant science for school-age children, launching a summer programme for teachers, and providing PhD and post-doctoral training for young scientists in cutting edge technology platforms within the research project itself.

McElwain says her ERC grant has enabled her to undertake ‘big question’ research with the potential to reach people in previously unforeseen way.

 

Project details

  • Project acronym: OXYEVOL
  • Participants: Ireland (Coordinator)
  • Project FP7 279962
  • Total costs: € 1 584 013
  • EU contribution: € 1 584 013
  • Duration: February 2012 - January 2017

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center