Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Countries

Last Update: 04-04-2014  
Related category(ies):
Energy  |  Environment  |  Pure sciences

 

Countries involved in the project described in the article:
France  |  Germany  |  Italy  |  United Kingdom
Add to PDF "basket"

The 'triple-win' way to reduce carbon in the atmosphere

Reducing the amount of carbon in the atmosphere is a key priority facing the world today as it attempts to mitigate the scale and effects of climate change. EUROCHAR, a European research project, is developing a technique which not only promises to help tackle this priority, but also offers additional benefits in the form of environmentally-friendly energy production and enhanced soil fertility.

Illustration of the Earth and some green fields
© Dmytro Tolokonov fotolia

The idea behind this ‘triple-win’ solution involves turning organic material (biomass) into a form of charcoal through a process of pyrolysis, or high temperature heating in a closed, oxygen-free environment. The resulting charcoal, or ‘biochar’ as it is known, in effect ‘locks in’ the carbon that was contained in the original biomass. The carbon is prevented from escaping into the atmosphere, as would happen if the biomass were left to biodegrade naturally.

“The stability offered by the biochar – the extent to which it locks in, or ‘sequesters’, the carbon – is central to the technique,” says EUROCHAR’s Project Coordinator, Dr Franco Miglietta of Italy’s Consiglio Nazionale delle Ricerche, because it means the biochar can safely be buried in soil. “The end result of this stabilisation process would be coal, which is completely un-decomposable,” explains Dr Miglietta. “While biochar is not as stable as coal, it does allow carbon that was originally in the atmosphere, and which would otherwise have been released back into it, to be safely sequestered in the soil.”

As well as sequestering the carbon, pyrolysis has a second advantage: it produces ‘syngas’, or synthesis gas, a combustible hydrocarbon which can be used as a fuel. The third aspect of the biochar ‘triple-win’ is that the soil is not just a place of storage for the biochar. It actually benefits from it. Adding biochar improves the physical structure of the soil, making it lighter, able to contain more water, and increasing its fertility.

“This completes the loop,” says Dr Miglietta. “If we have better soil we can produce more biomass. With more biomass we can produce more energy, and that means we can produce more biochar.”

One key part of the EUROCHAR research was an investigation to establish exactly how stable biochar actually is. This was done by examining ancient pits containing biochar thousands of years old. “Although the final, detailed analysis has yet to be completed,” says Dr Miglietta, “the results clearly indicate that biochar provides an option for carbon sequestration which could last for centuries.”

A separate strand within the project, based on field experiments at sites around Europe, established that, when added to soil, biochar protects the carbon still in the soil from degradation and decomposition, in addition to its function of sequestering the carbon in the original biomass. It therefore has a dual impact when it comes to reducing carbon in the atmosphere.

EUROCHAR team also worked on methods for creating biochar, and conducted a full life-cycle analysis of the entire concept. Allowing for factors such as the energy input required for pyrolysis, this analysis showed that the creation and use of biochar resulted in a sequestration of around 20% of the carbon contained in the original biomass.

Another important strand of the EUROCHAR project involved testing biochar for any potentially damaging impact, including whether its use over a long period might have a toxic effect on plants or animals. A second risk the research team looked into was the effect that mixing large quantities of biochar into the soil might have.

“The results of these risk assessments are still being analysed, but given favourable outcomes the work of EUROCHAR’s research team could be put to practical use without too much delay,” concludes Dr Miglietta.

 

Project details

  • Project acronym: EUROCHAR
  • Participants: Italy (Coordinator), UK, France, Germany
  • Project FP7 265179
  • Total costs: € 3 502 535
  • EU contribution: € 2 498 900
  • Duration: January 2011 - June 2014

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center