Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 24-03-2014  
Related category(ies):
Health & life sciences  |  Special Collections

 

Countries involved in the project described in the article:
Austria  |  Czech Republic  |  Germany  |  Hungary  |  Italy  |  Spain
Add to PDF "basket"

Fighting cancer by attacking its support network

When we think of cancer we often think of rogue, villainous cells in an otherwise healthy organ. But research is increasingly showing that our bodies are complicit in the disease, providing cancer cells hiding spaces. Scientists are trying to use this knowledge to create a more accurate laboratory model of one particular type of cancer - multiple myeloma - and thus to develop better drugs to treat it.

Illustration of human cells
© Jezper fotolia

Multiple myeloma affects a type of white blood cell. In Europe and the USA 50,000 people are diagnosed yearly with multiple myeloma. Drugs targeting the cancer have been marginally successful, but many have failed when they get to human testing.

Therefore the EU-funded OPTATIO project is developing a new type of testing platform that incorporates both cancer cells and their surrounding “micro-environment”: tissue cells, bone marrow cells, blood vessel cells and immune cells. These support cells are in close contact with the cancer cells and are exchanging chemical signals with them as a tumour develops. In essence, they serve as the soil in which the seed of cancer grows.

Researchers have already created realistic “co-culture” systems of both seed and soil, but what OPTATIO project introduces is an entirely new level of verification of the results. Through partnerships with clinicians the team has collected cells from hundreds of myeloma patients across Europe. Since clinical data also exist on these patients – including information about which drugs they responded to and how – the results between cell culture and real-life patient can be compared to get as close a replica as possible.

In addition, co-culture systems could allow researchers to test a new approach to drug therapy: perturbing the cancer’s “soil” rather than attacking the cancer cells directly. This is a promising improvement since drugs that target the cancer cells often do not kill all of them, and can thus encourage drug resistance. “Drugs will always target only a proportion of the disease, and so there is a lot of selective pressure on these cells,” says Project Coordinator Wolfgang Willenbacher at Innsbruck Medical University in Austria. “We feel the environment might be a much more constant variable,” he adds.

The industrial partners involved in the project initially provided thousands of compounds that were tested in the co-culture systems. Two primary categories of potential drugs tested were kinase inhibitors, which block enzymes crucial for cancer cells to multiply, and natural marine substances, which contain chemical weapons produced by marine organisms.

From that original testing, the researchers identified several promising candidate compounds to bring to the next stage of drug testing, in mice. That part of the project is underway now. Depending on how the tests go, the team expects to have at least one, and maybe more, drugs ready for phase I clinical trials by the end of 2014.

 

Project details

  • Project acronym: OPTATIO
  • Participants: Austria (Coordinator), Hungary, Germany, Spain, Czech Republic, Italy
  • Project FP7 278570
  • Total costs: € 4 284 452
  • EU contribution: € 2 999 529
  • Duration: January 2012 - December 2014

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center