Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Infocentre

Published: 27 January 2014  
Related theme(s) and subtheme(s)
Health & life sciencesBiotechnology
Countries involved in the project described in the article
United Kingdom
Add to PDF "basket"

Developing human organs and body parts in the lab

Tissue engineering is making a huge impact in the world of science with artificial scaffold structures, in which new cells are encouraged to grow. This means that the nanostructure of tissues in the body can be mimicked, so that human organs and body parts can be developed in the laboratory.

Photo of a test tube
© fotolia

Leading this research is Professor Molly Stevens from the Imperial College, London, who has previously been voted one of the world’s top 100 scientific innovators under the age of 35. Her area of expertise lies in nanomaterials and biological systems and seeing how they converge, in particular how replacement bones can be grown by using smart polymer systems.

To do this Professor Stevens has assembled a multidisciplinary team – encompassing engineering, biology, chemistry and physics for the NATURALE project ('Bio-inspired Materials for Sensing and Regenerative Medicine'), with support from a European Research Council (ERC) starting grant of EUR 1.6 million.

The team’s innovative approach to tissue engineering has proved successful in engineering large quantities of human mature bone for autologous transplantation, as well as other vital organs such as liver and pancreas, which have proven elusive with other approaches.

This has led to moves to bring the idea closer to the market with additional ‘Proof of Concept’ funding from the ERC and the setting-up of clinical trials for bone regeneration in humans. The team have also developed synthetic versions of nanostructures and are making progress with improving cell growth for tissue regeneration. There have also been significant advances in improving bio-sensing technologies for the monitoring of enzymes and other bio-chemicals.

Furthermore their developments are believed to have an impact on many clinical applications, particularly in the early detection of diseases ranging from cancer to HIV. Tests have been done using human samples from HIV positive patients, which offers a much simpler naked eye based read-out as it is ten times more sensitive than any identification used to date. This could be commercialised in the near future. The results of the project have been published in Nature Nanotechnology.

Professor Stevens believes that her research group’s success lies in a focus on high quality innovative work and the group’s multidisciplinary nature, resulting in a number of new exciting ideas, which are emerging all the time. She is particularly excited about seeing a number of therapies she is working on, which will help patients in the future.

 

Project details

  • Project acronym: NATURALE
  • Participants: UK (Beneficiary)
  • Project FP7 206807
  • Total costs: € 1 643 021
  • EU contribution: € 1 643 021
  • Duration: October 2008 - September 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece