Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
  E-Commerce
  Information technology
  Internet
  Microelectronics and nanotechnology
  Multimedia
  Telecommunications
  Other
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belgium
  Benin
  Brazil
  Bulgaria
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Success Stories

Last Update: 25-10-2013  
Related category(ies):
Human resources & mobility  |  Information society

 

Countries involved in the project described in the article:
Latvia
Add to PDF "basket"

Expanding the frontiers of computing to benefit and protect society

It has become a cliché today to talk about the ‘IT revolution’. Computers have changed our lives beyond recognition. However, the scale of this revolution could be dwarfed by the advances promised by the next generation of information technology – quantum computing. With its potential to exponentially increase computing power, quantum computing opens up possibilities we could previously only dream of. These possibilities include quantum cryptography, strengthening our capabilities in an area that has become more and more critical as computers have increasingly become central to our lives: the need to stay secure against potential criminal hackers and terrorists.

©  Tomasz Zajda - Fotolia.com

Supported by an Advanced grant of the European Research Council (ERC), a leading specialist in quantum computing at the University of Latvia is working at the frontier of this emerging and radical new technology. Leading a team of 12 researchers, Professor Andris Ambainis is in the early stages of a five-year project to explore the possibilities of quantum computing and to help translate its exciting potential into the realms of everyday practical use.

In essence, quantum computing applies the laws of quantum mechanics to computer science. As Professor Ambainis explains: “At the quantum level, physical laws are different from what we see in everyday life.” These laws mean that electrons or other particles can behave in different ways at the same time – which means they can be used to perform multiple simultaneous computer calculations. “With, say, 20 electrons we could do around 220 computations at the same time, which is getting into the millions,” says Professor Ambainis. “As we get towards 100 particles, the number of computations gets really enormous,” he adds.

In comparison with conventional computing, it can be seen that the potential of quantum computing is little short of mind-boggling.

In an age when cyber security is high on the agenda, the specific possibilities offered by one area of quantum computing - quantum cryptography - are vast. “With ordinary cryptographic schemes,” says Professor Ambainis, “there is always a chance that someone can hack into them. With quantum cryptography, the only way to hack into them would be by discovering some physical effect that is completely outside of quantum mechanics, which is very unlikely.”

While the potential for quantum computing to create more or less unbreakable codes is one area of interest, Professor Ambainis’s MQC (Methods for Quantum Computing) project is looking into another important aspect: the threat that quantum computers pose to conventional cryptography. Using its understanding of quantum computing, one goal of MQC is to reinforce conventional cryptography against decrypting by quantum computers. “The goal is to come up with a cryptography that would be simple to use, would not require quantum devices, but would be secure against quantum devices,” he explains.

“Quantum computing will open up possibilities in other areas as well”, adds Professor Ambainis. In short, any task which requires large amounts of data to be searched and analysed will benefit. But there is a further application. “What particularly excites me,” he says, “is the opportunity to model quantum physics on an ordinary computer, for example chemical reactions. These are essentially quantum processes, and at the moment it is extremely difficult to model them on an ordinary computer because of their quantum nature.”

Professor Ambainis emphasises that ERC funding has been critical in helping him establish his laboratory and carry out this important work. “Returning to Latvia in 2007 after working in Canada and the USA”, he recalls, a Marie Curie International Reintegration grant was his lifeline. “Latvia was one of the countries worst hit by the financial crisis,” he says, “and the Marie Curie grant was the only thing supporting me. I also received further help through EU Structural Funds.”

Today, thanks to its ERC funding, Professor Ambainis’s MQC project is set to run until 2018, moving Europe a huge step forward – way beyond the IT revolution and on to the quantum IT revolution.

Project details

  • Project acronym: MQC
  • Participants: Latvia
  • Project FP7 320731
  • Total costs: €1 360 980
  • EU contribution: €1 360 980
  • Duration: May 2013 - April 2018

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center