Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Headlines

Last Update: 11-09-2013  
Related category(ies):
Human resources & mobility  |  Health & life sciences  |  Success stories

 

Countries involved in the project described in the article:
Austria  |  Belgium  |  France  |  Germany  |  Portugal  |  Spain  |  Switzerland  |  United Kingdom
Add to PDF "basket"

Brain project gives young scientists a flying start

Through collaborative work, an EU-funded research team aims to uncover how neural circuits are genetically encoded and how neuronal computation controls behaviour. It has also set out to give some of Europe's brightest young scientists the chance to cooperate with colleagues in other countries and push forward our understanding of the brain.

©  dimdimich - Fotolia.com

Just how do billions of interconnected cells in the brain interpret and regulate all our bodily functions, in addition to storing all our memories and experiences? Understanding this remains one of medical science's greatest challenges, but also one of its most tantalising, potentially opening the door to cures for diseases such as Alzheimer's, dementia and Parkinson's.

One thing is clear: achieving this dream will require painstaking examinations of the numerous mechanisms and processes that go on at the genetic and biochemical levels of the brain. In addition, scientists need to better understand the behaviour of neurons – the cells which process and transmit information through electrical and chemical signals – and how these adapt to outside stimuli.

Such research is time-consuming and costly, and achieving a full understanding of the brain remains a long way away. A sensible use of resources would therefore be to train up young scientists in innovative forward-looking projects who will be able to apply the know-how gained in the project to other studies and programmes.

This is precisely the objective of the EU-funded FLIACT ('Systems neuroscience of Drosophila: from genes to circuits to behaviour') project, which is training researchers starting out in their careers in cutting-edge concepts and techniques. The FLIACT programme's ultimate objective is to create a unique pan-European training network that interconnects eight academic partners and three SMEs specialised in complementary fields of research, from molecular and behavioural neurogenetics to electrophysiology, bioengineering and applied biomedicine.

In order to facilitate knowledge transfer across this network – and to achieve meaningful results – FLIACT is focusing on one model organism, the fruit fly Drosophila melanogaster. During the last decades, the tiny fruit fly has become the main model system for studying how we perceive and integrate information arising from our five senses. Drosophila has also emerged as a powerful model for studying the genetic bases of neurodegenerative diseases that affect humans.

As Drosophila has a million times fewer neurons than humans, the study of its brain is expected to shed light on general principles underlying the functional organisation of neural circuits.

A major long-term benefit of this project will be the development of a fruit fly toolkit, which can be used to investigate the function of neural circuits in vivo and to scientifically test their functions. The project aims to provide the FLIACT neuroscientists with the necessary support to use these tools effectively.

In the short term, FLIACT fellows will seek – through collaborative and personalised research projects – to better understand how neural circuit computation controls behaviour and how circuit-function relationships are genetically encoded. In order to share best practice, the project will organise a series of interdisciplinary workshops on neurogenetics, neuroanatomy, neuroimaging, and behavioural analysis and transferable skills.

Project details

  • Project acronym: FLIACT
  • Participants: Spain (Coordinator), Belgium, Switzerland, Austria, Germany, United Kingdom, Portugal, France
  • Project FP7 289941
  • Total costs: €3 152 307
  • EU contribution: €3 152 307
  • Duration: January 2012 - December 2015

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center