Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Environment

Last Update: 10-09-2013  
Related category(ies):
Success stories  |  Environment

 

Countries involved in the project described in the article:
Belarus  |  Belgium  |  Denmark  |  Estonia  |  Finland  |  France  |  Germany  |  Greece  |  Norway  |  Poland  |  Russia  |  Serbia  |  Sweden  |  United Kingdom
Add to PDF "basket"

Arctic exploration provides window on future climate change

Climate model projections show that the Arctic Ocean will be completely ice-free by the summer by 2060. However, the record lows in sea ice extent of 2007 and 2012 demonstrated that these projections were too optimistic and some scientists think that we might see and ice free Arctic within this or the next decade. This momentous transformation will undoubtedly have important consequences for our climate, but opinions to the extent of the severity of this change vary.

©  niyazz - Fotolia.com

In order to put in place timely and effective remedial action however, it is clear that we need to have the tools at hand to accurately monitor and assess exactly what is happening.

For this reason, the EU-funded DAMOCLES ('Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies') project was established to improve Europe's Arctic modelling and observing capabilities. The ultimate objective is to identify and understand the changes that are currently happening in the sea-ice, atmosphere and ocean of the Arctic and subarctic region. Indeed, a key concern has been that while the rest of the world is monitored by meteorological and oceanic instruments, the Arctic has never been subject to a comparable level of monitoring.

In order to address this, the DAMOCLES brought together 48 research institutions – including 10 SMEs distributed among 11 European countries, Russia and Belarus – along with experts from the US, Russia, Canada and Japan. The project is part of an international effort, truly global in both its ambition and nature, to jointly tackle the Arctic research challenges.

The tasks were highly complex, involving ships, aircraft, icebreakers, satellite recordings and the use of equipment underneath the ice. The team attached unmanned buoys to drifting sea ice in order to measure the heat and salinity of the ocean. These buoys communicate with satellites and data streams in real time to scientists in Europe.

Furthermore, sound waves were used to measure ocean temperature. An underwater loud speaker was lowered below the surface, along with a receiver. Because travel velocity of sound depends on temperature (for a given salinty), scientists are now able to monitor the water temperature at great distance with high accuracy and minimum expenditure. Torpedo-shaped robots were also used to measure temperature, salinity, pressure and speed as they travelled through the ocean at different depths.

Instruments were also anchored to the sea bed along the edge of the Arctic Ocean, where strong currents carry warm Atlantic waters from the North Atlantic into the central Arctic. This enables scientists to monitor the state of the ocean in a specific place over a long period of time. Instruments installed on drifting ice also provide a clearer picture of how fast Arctic ice is disappearing.

When data from early 2007 was entered into the DAMOCLES model, it correctly predicted the presence of large ice-free areas in the middle of the Arctic Ocean later on in the year. The project managed to improve Arctic monitoring, giving authorities a longer lead-time to prepare for the onset of extreme climate events.

Project details

  • Project acronym: DAMOCLES
  • Participants: France (Coordinator), United Kingdom, Norway, Russia, Greece, Germany, Poland, Finland, Sweden, Estonia, Denmark, Belgium, Belarus  
  • Project FP6 18509
  • Total costs: €25 677 315
  • EU contribution: €16 522 614
  • Duration: December 2005 - May 2010

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center