Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Health & life sciences

Last Update: 03-09-2013  
Related category(ies):
Health & life sciences  |  Success stories  |  Special Collections

 

Countries involved in the project described in the article:
Germany  |  Netherlands  |  Portugal  |  Spain  |  Sweden
Add to PDF "basket"

A fine eye for detail with new breast cancer screening

Breast screening with x-ray mammography has made a vital contribution to reducing deaths from breast cancer. Dr José Maria Benlloch of CSIC (Spanish National Research Council) and his partners in the MAMMI project (Mammography with Molecular Imaging) recognised this, but they were driven to push science and engineering further to develop machines dedicated exclusively to breast scanning. Now it is possible to radically improve the quality of imaging, detect cancer cells at a much earlier stage and monitor the effectiveness of the treatment more accurately.

©  Pretty M - Fotolia.com

In this project, science and engineering worked together to respond to a set of needs and desires of those on the front line of cancer treatment. Many women, especially older women, complain that traditional scanning procedures that compress the breast are very uncomfortable and also rather undignified. At the end of it all, the results are still limited and in at least 10 % of cases they could produce a false positive, where patients are told they have cancer when in fact they don’t.

Equally, false negatives, where women are wrongly reassured they don’t have cancer, are also an issue.

At the other end of the age spectrum, young women with denser breast tissue can be even harder to screen accurately, causing more uncertainty with diagnosis and treatment.

At the moment, whole-body scanners tend to be used, but these new PET (positron emission tomography) scanners are specific to the breast and so are smaller and portable. Women can be examined lying down, which is much more comfortable, and this equipment also allows a clearer view of the pectoral wall, where the breast joins the chest. It is here that cancer cells start to form but cannot be detected by mammograms until a lesion of around 5 mm has formed; so getting clearer results and at very early stages of tumours developing are big assets for the new scanners.

PET scans are based on gamma ray imaging with radioactive isotopes, which creates a whole new dimension in identifying tumours. They give a much more sensitive response to the presence of cancer cells, improving the initial diagnosis and the level of detailed information about the tumour. Tumours accumulate more glucose to feed the growth of the cancer cells and radioactive tracers can target and cling to these sugar-fuelled hotspots and reveal much clearer results on the scan.

Diagnosis is a vital first step and this technology is giving doctors fuller and more accurate information before treatment begins. The level of detail is transforming the speed of intervention and the specific type of treatment recommended. This may be surgery, radiotherapy or a combination of the two, plus lengthy drug treatments.

Scarring following treatment is the next hurdle to overcome. Scar tissue reduces the effectiveness of normal mammography, but molecular imaging through PET scanning can see through it better. The improvements don’t stop there however, because the MAMMI prototype also gives much quicker follow-up information to monitor how treatment is going. Instead of waiting for months before doctors can assess the effectiveness of their treatment choices, this type of imaging is giving detailed feedback within weeks. This fast response means drugs can be changed and fine-tuned much sooner, giving a better and more efficient service to patients and the health system.

Dr Benlloch has generally been really encouraged by the momentum of the project. It has been an opportunity to see excellent doctors working with engineers to deliver a novel piece of equipment.

Their enthusiasm has kept up motivation and demonstrated the powerful combination of science, engineering and commercial need.

As a reality check however, management and logistical problems cropped up early on because the number of partners and the range of clinical aspects included were too big. Everyone needed to simplify and scale down, which was hard but essential if they were to produce useable results.

Biting this bullet meant that a pilot project with 60 patients was completed on time and within budget, paving the way for future developments.

The next step should be based on a clinical validation study with 5 000 patients. In other words, results from the pilot project need now to be subjected to testing on a much bigger scale, but the small, complex beginnings of the MAMMI study may lead on to reliable real-world outcomes.

Project details

  • Project acronym: MAMMI
  • Participants: Spain (Coordinator), Germany, Sweden, Portugal, Netherlands
  • Project FP6 37555
  • Total costs: €4 092 804
  • EU contribution: €2 500 000
  • Duration: January 2007 - December 2010

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center