Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Countries

Last Update: 12-06-2013  
Related category(ies):
Human resources & mobility  |  Health & life sciences  |  Success stories  |  Special Collections

 

Countries involved in the project described in the article:
Ireland  |  United Kingdom
Add to PDF "basket"

Laying down markers for future cancer treatments

Targeting existing proteins in the human body which contribute to the growth of cancerous cells can help researchers develop tailor-made treatments. A team of EU researchers is working on ways to trick the proteins which ordinarily aid cancer growth into delivering therapeutic treatments directly to the cancerous cells.

©  freshidea - Fotolia.com

The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a protein found on the surface of human cells which plays a crucial role in our bodies. It aids growth, increases muscle mass and boosts cell survival and proliferation. However, it struggles to discern between good and bad effects on cells. IGF-1R has also been shown to promote the growth and invasiveness of cancer cells.

While this unwanted secondary function is an obvious risk to health, it also provides cancer researchers with an opportunity. Researchers in the field believe that understanding the characteristics of IGF-IR activity could help them develop important therapeutic treatments which use these attributes to target cancerous cells in the breast, lung and colon.

The potential for using these versatile proteins as targets in cancer cells has attracted major interest from pharmaceutical companies and clinicians alike. At least 70 clinical trials are under way worldwide to test several different drugs that inhibit the IGF-1R and the IGF-I signalling pathway at different points.

One of the major challenges to targeting the IGF-1 pathway in cancer is the lack of suitable biomarkers, the measurable substances that reflect the severity or presence of a disease. These could be used to assess IGF-IR activity in tumours, facilitate the selection of patients and subsets of tumours that are most likely to respond to inhibitors, and monitor responses to IGF-1R inhibition.

Marking out the route

The BioMarker IGF project, supported by Marie Curie Actions – an EU research fund managed by the Research Executive Agency (REA), aims to address this problem by identifying and validating biomarkers for the IGF-I signalling pathway in cancer – in other words, what prompts the cancer to grow.

“The IGF-1 signalling pathway is active in a majority of cancers and contributes not only to the growth of tumours and the ability of cancer to spread, but also to a lack of responses to many existing therapies, including chemotherapy and radiation,” says Professor Rosemary O’Connor, the project coordinator.

“To successfully combine the right drugs to attack a particular cancer or subset of cancers, biomarkers of activity, which means being able to assess the status of the IGF-1 pathway in patients’ cells, are required,” she adds. These biomarkers will ultimately determine which kinds of cancer may benefit from which drug combinations.

The research is being carried out by experts in IGF-1 signalling at University College Cork in collaboration with experts in pharmacogenomic (the influence of genetic variation on drug response) approaches to biomarker discovery in cancer at Almac Diagnostics, a Northern Irish Biomarker Discovery, Development and Delivery company.

The collaborative aspect, which includes extensive transfer of knowledge and experience, as well as exchanges of researchers, is integral to the project’s success. The co-operation is also expected to lead to the development of commercial applications. “Our industry partner Almac is currently engaged in developing diagnostic tools for the treatment of cancer,” Prof. O’Connor says. “Other companies and clinical investigators are also testing inhibitors of the IGF-1 pathway.”

Prof. O’Connor says that the ultimate objective of the project is to select a clinically validated signature or biomarker for IGF-1 pathway activity in one or more cancers. “This would ideally be used to select patients or subsets of cancers suitable for inhibitors of this pathway in combination with other therapies,” she concludes. “The biomarkers could also be used to monitor therapy responses.”

The project team is currently in the process of analysing data from genomic screens to identify good matches. These will then be validated using patient databases, and tested in clinical trials.

Project details

  • Project acronym: BioMarkerIGF
  • Participants: Ireland (Coordinator), United Kingdom
  • Project FP7 251480
  • Total costs: €799 470
  • EU contribution: €799 470
  • Duration: September 2010 - August 2014

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center