Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 11-06-2013  
Related category(ies):
Industrial research  |  Success stories  |  Nanotechnology

 

Countries involved in the project described in the article:
Austria  |  India  |  Ireland  |  Italy
Add to PDF "basket"

Metal oxides: building blocks for future nanoelectronics

We human beings breathe oxygen to live. But oxygen is also part of a class of materials - transition metal oxides - which have excited academics and industry alike. Little is understood of their properties. EU-funded researchers, led by Trinity College Dublin, are keen to change that. The team has developed modelling tools for investigating the behaviour of potential micro- and nanoelectronic devices using transition metal oxides.

©  Edelweiss - Fotolia.com

Described as outstanding building materials for future nanoelectronics, transition metal oxides possess a number of fascinating properties, including one overriding quality called ‘colossal magneto-resistance’ where the resistance changes in a magnetic field. In some of them – a class of multiferroic oxides – the path of electrical currents passing through an object can be altered by introducing an external magnetic field.

Developments in this field pave the way for countless practical applications, from new signalling operations in multifunctional devices to new memory sources in ultra-powerful computers, and devices that never lose your data.

“Despite the huge amount of work already accomplished in this field, a deep and complete understanding of these materials and their interfaces is still lacking,” says Professor Stefano Sanvito of Trinity College Dublin’s School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices. He led a joint research programme – the Athena project – between European and Indian scientists which focused on advanced theories for functional oxides and new routes to handle the devices of the future.

This gap in understanding is due both to the complexity inherent in the physics of strong-correlated electrons, he explains, and “an unquestionable lack of coordinated effort devoted to share, integrate and develop the most advanced and powerful computational techniques available”.

Athena set out to close the gap by fostering collaboration between experts in Austria, Italy, Ireland and India who pursued the most advanced methodologies for the theoretical study of strongly correlated phenomena in transition metal oxides.

But magneto-resistance is by no means a new field. In 1856, Irish inventor Lord Kelvin came up with the principle of ordinary magneto-resistance (OMR). The physics community built on Kelvin’s OMR foundations and eventually derived the classification for so-called ‘colossal magneto-resistance’ (CMR), which describes the ability of metals, such as perovskite oxide, to alter the resistance on a massive scale.

It was not until the end of the 20th century that this technology began to live up to its potential with new applications opening up in solid-state devices. In other words, the circuits and parts in devices like a smartphone are built from solid materials, and the electrons, or other charge carriers, are confined entirely within these materials.

European leaderships results in new models

The exciting and relatively new (emerging in the 1990s) field of ‘spintronics’, for example, exploits both the intrinsic spin of the electron and its associated ‘magnetic moment’ plus its fundamental electronic charge in solid-state devices. The Athena project has now built models explaining the underlying behaviour of metal-insulator phase changes and magneto-electronic interplay.

The branches of physics involved are intensely complex, which is why the Athena partners joined forces in the first place. Together, they have been able to tackle, by first principles, key functions and correlations of metal oxides as viable building blocks for better, faster and more reliable future micro- and nanoelectronic devices.

Thanks to the exchanges between students and experts from Europe and India, Athena has performed ground-breaking work on new oxide materials and their interfaces which, according to Prof. Sanvito, will have a tremendous impact on academic and industrial research.

“Our team has developed parameter-free modelling tools for investigating the behaviour of systems and devices using transition metal oxides. These solve directly the equations of quantum mechanics, allowing us to understand the properties of existing materials and predict those of new ones.”

Project details

  • Project acronym: ATHENA
  • Participants: Ireland (Coordinator), Austria, India, Italy
  • Project FP7 233553
  • Total costs: €1 099 053
  • EU contribution: €849 998
  • Duration: June 2009 - May 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center