Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
  Industrial
  Nanoelectronics
  Nanomaterials
  Nanomedicine
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 23-04-2013  
Related category(ies):
Industrial research  |  Success stories  |  Nanotechnology

 

Countries involved in the project described in the article:
Belgium  |  France  |  Germany  |  Hungary  |  Netherlands  |  Slovenia  |  United Kingdom
Add to PDF "basket"

Nanotechnology to fight hospital superbugs

Each year, twice as many people die in Europe from hospital acquired infections than from road accidents. These infectious diseases have developed antibiotic resistance and spread despite the best efforts of staff, mainly through textiles like bed linen. But the technology developed by a European research project helps fight back against the so-called superbugs, by using a revolutionary nanotechnology to treat bed linen and other textiles.

©  Fotolia

The European Nanobond consortium consisted of six companies and two scientific partners. It developed durable antimicrobial textiles with a polymeric coating in the nano range thickness – in other words, of a few layers of polymeric molecules. The textiles have been clinically tested to withstand industrial-strength laundry cycles, and the treatment lasts for the entire lifetime of the product.

The technology is all the more timely since the role of textile surfaces as ubiquitous hosts to bacteria was underestimated until recently, when it was assumed a wash alone would disinfect. But, even in the journey from laundry to the hospital, there are all sorts of opportunities for new infections.

The World Health Organisation (WHO) now warns that textiles act as a microbial harbour for superbugs. In the Netherlands, 6.6% of all patients catch a hospital acquired infection (HAI); France now reports 750,000 HAI cases a year, and Germany puts the annual cost of fighting HAI at €2.5 billion. New born children, the old and the weak are the most vulnerable to them.

Yet Nanobond has shown the superbugs can be beaten. “We proved that even in bacteria rich environments, these anti-microbial textiles will resist, and not spread the infections,” says Nanobond project coordinator Patrice Vandendaele, from Belgium-based Devan Chemicals, one of the firms involved in the project consortium.

Vandendaele said Nanobond sought to develop easy-to-clean textiles that last long, use few chemicals, keep patients healthy and avoid cross-contamination. The breakthrough came when the consortium discovered a molecule that sticks to other molecules. “This molecule was helping organise the antimicrobial molecules, so they would glue better to the surface of the textiles,” Vandendaele says.

The antimicrobial surface effectively acts physically rather than chemically. It has two distinct parts: a glue system to attach to the textiles, and an antimicrobial part to pierce the membrane of any bacteria cell that it touches. “It works like a spike bursting a balloon,” says Vandendaele. “While other antimicrobials give bacteria time to adapt, this kills it immediately.”

Both natural and artificial fibres can be treated. And the application itself is a simple dip in a bath followed by drying and curing. Nanobond’s tests show that it kills 99.99% of all micro-organisms after the first treatment, a figure that stays as high as 90% even after 70 washes.

And once the application attaches to textile, it does not leach out into the environment. Nor does it attack good micro-organisms on the skin that help protect people. It only kills what lands on the textiles. “It also means that articles treated with the new technology will have a longer natural lifetime through protection against damage and spoilage,” Vandendaele says.

The project, backed by a European Union (EU) grant of € 1.68 million, ran for three years from September 2009 to August 2012. Now the businesses involved in the consortium are promoting products under a common brand, Maedical. Their goods range from bed sheets to hospital gowns, socks, mattress protections, bandages, upholstery and carpets.

Project details

  • Project acronym: Nanobond
  • Participants: Belgium (Coordinator), Hungary, Germany, United Kingdom, Slovenia, France, The Netherlands
  • Project FP7 228490
  • Total costs: €2 212 840
  • EU contribution: €1 678 871
  • Duration: September 2009 - August 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center