Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Health & life sciences

Last Update: 15-02-2013  
Related category(ies):
Health & life sciences  |  Success stories  |  Special Collections

 

Countries involved in the project described in the article:
Austria  |  Germany  |  Hungary  |  Spain  |  United Kingdom
Add to PDF "basket"

Pinpointing cancer's origins

Cancer is one of the most pressing health matters of our time. It is a disease that attacks the very building blocks of life, leading to uncontrolled cell division and disabling programmed cell death. Almost everyone has known at least one person who has had to cope with cancer; it remains one of the leading causes of death in Europe.

©  Fotolia
Too often a person diagnosed with cancer can only hope for a treatment that prolongs their life, rather than a cure. Yet oftentimes these treatments come with considerable side effects. This is why more research projects, such as the EU-funded CancerPathways project, are exploring the origins of cancer, as ultimately understanding how cancer begins and grows is fundamental to one day preventing the disease.

All living organisms are assembled according to instructions found in their genes. These genes produce proteins, which work together in a sequential manner to transmit a signal, either from one cell to another or within a cell. The sets of proteins and the genes that make them are commonly referred to as a ‘signalling pathway’, which determines responses to these signals, for example decisions whether a cell divides or not and when it dies. But when a signalling pathway becomes overactive or active in the wrong tissue, it can cause cancer.

“Imagine the information flow in our cells as one big public transportation network,” explains Professor Michael Boutros from the German Cancer Research Centre and Heidelberg University. “When one part gets blocked, the whole system is affected – and depending on where the blockage is, the effect may be bigger or smaller. So in order to understand carcinogenesis and design better and individual treatments, we have to understand how signalling molecules fit in the overall system. And we need a better understanding of the whole system rather than only individual components.”

New therapeutic approaches in cancer treatment have begun targeting signalling pathway components, such as the drug Herceptin (primarily used to treat breast cancer), which targets a growth factor receptor to reduce uncontrolled cell growth. However, the full potential of signalling molecules as therapy targets has yet to be explored.

This was the main goal of CancerPathways, a three-and-a-half-year EU-funded research project, which Boutros coordinated. “Many signalling pathways interweave so you cannot just target one with drugs without affecting others. Our hope was that by unearthing the players in carcinogenesis, we would also identify novel targets for therapy.” CancerPathways was launched in 2008 and received just under €3 million in EU funding.

Its main ‘research tool’ seems a bit unusual at first, as it came in the form of Drosophila – also known as fruit flies. On the surface human beings and fruit flies have few similarities. Underneath, however, they share approximately 70 percent of the genes known to be involved in human diseases. This surprising level of similarity in how humans and simpler organisms (such as the fruit fly) are put together, has allowed scientists to use flies as so-called ‘model organisms’ to work out how genes work in humans. In fact, over 90 percent of the signalling pathways that play an important role in cancer were first discovered through the study of flies.

"We tested both fruit flies and fruit fly cells grown in the lab with a method called RNA interference (RNAi),” Boutros explains. RNAi was only recently discovered, with first reports published in 1998. The mechanism involves putting a tiny chunk of genetic code into an organism or cells, to cancel out a specific gene. This effectively switches that gene off, thus enabling the systematic analysis of every single gene, including its signalling molecules and pathways. “Our research built the groundwork for future cancer therapies,” Boutros says. “We generated a nearly genome-wide RNAi library of Drosophila flies – containing about 11 000 different fly lines – which can be used for future research by the entire science community. We also identified several novel candidate genes and demonstrated their function in cancer signalling pathways.”

Over the past few years cancer diagnostics have become more precise, according to Boutros. The next decade will see cancer therapies becoming increasingly individualised. Drugs will be tailored to damage signalling components on a case-by-case basis. Boutros says: “CancerPathways’ work is an important contribution to making that possible”. The project’s success stemmed from the combined efforts of its eight European partners. “No single country would have had a science community with all the expertise needed for this kind of research, which requires both depth and breadth,” he explained. “It is this combination of expertise from different nations that makes European research unique.”

Officially the CancerPathways project ended in October 2011, however its work continues. After identifying small molecular compounds and exploring their potential for developing new anti-cancer drugs, the partners are currently evaluating these small molecules as well as new gene targets.

Project details

  • Project acronym: CANCERPATHWAYS
  • Participants: Germany (Coordinator), Austria, Hungary, Spain, the United Kingdom
  • Project FP7 201666
  • Total costs: €4 438 621
  • EU contribution: €2 995 295
  • Duration: May 2008 - October 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site
Project information on CORDIS





  Top   Research Information Center