Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 23-11-2012  
Related category(ies):
Health & life sciences  |  Special Collections

 

Add to PDF "basket"

Hope for effective new malaria treatment

A research project carried out jointly by chemists at Imperial College London in the United Kingdom and biological scientists at the Institut Pasteur/Centre National de la Recherche Scientifique (CNRS) in France have opened the door to a promising new treatment for malaria. The researchers have successfully identified a new means to eradicate blood-borne Plasmodium parasites that cause the disease. Their research was supported in part by a European Research Council (ERC) grant.

Malaria virus © Shutterstock
Malaria virus
©  Shutterstock

Malaria causes up to 3 million deaths each year, particularly afflicting vulnerable people such as children under the age of five, and pregnant women. It is predominantly prevalent in tropical regions of Africa, Asia, and Latin America. In addition, 102 cases were reported in Europe by the World Health Organization (WHO) in 2011. Although treatments for malaria are currently available, the Plasmodium parasite is rapidly becoming resistant to the most common drugs, and new strategies to tackle the disease are desperately needed.

The collaborating research groups have identified a potential new malaria drug consisting of molecules that interfere with parasite histone methyltransferases, enzymes crucial to the parasite's growth and viability during the blood stage of its lifecycle. The new drugs rapidly kill parasites in culture, and are also able to greatly reduce parasite infection in mice in a single day. These results were published in the Proceedings of the National Academy of Sciences (PNAS) in October.

Dr Matthew Fuchter from Imperial College London spoke about the importance of finding new treatments, and the new weakness in the parasite that both teams discovered: 'Plasmodium falciparum causes 90 per cent of malaria deaths, and its ability to resist current therapies is spreading dramatically. Whilst many new drugs are in development, a significant proportion are minor alterations, working in the same way as current ones, and therefore may only be effective in the short term. We believe we may have identified the parasite's "Achilles' Heel", using a molecule that disrupts many vital processes for its survival and development.'

The research teams have successfully identified two chemical compounds that affect Plasmodium falciparum's ability to carry out transcription, the key process that translates genetic code into proteins. Unlike the majority of antimalarial drugs, these compounds are able to kill the parasite during the 48-hour blood borne period of its complex life cycle, when it is growing and differentiating.

'One particularly exciting aspect of this discovery is this new molecule's ability to rapidly kill off all traces of the parasite, acting at least as fast as the best currently available antimalarial drug,' noted the principle investigators of this study. Initial tests in the Arthur Scherf laboratory at the Institut Pasteur also showed the molecules were able to kill strains of Plasmodium that have developed a resistance to current treatments, although the scientists say more experiments are needed to confirm these results. The group hopes to refine these molecules, which would improve their effectiveness, and it aims for this to be a viable strategy for treating malaria in humans. The scientists hope it will lead to the development of an effective malaria cure within the next 10 years.

Their research was partly funded by an ERC Advanced Grant awarded to Professor Arthur Scherf at the Institut Pasteur in 2009 for the project PLASMOESCAPE.

Their research also received support from the New York Pasteur Foundation and the Bill and Melinda Gates Foundation.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Proceedings of the National Academy of Sciences
Institut Pasteur





  Top   Research Information Center