Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belgium
  Benin
  Brazil
  Bulgaria
  Canada
  Chile
  China
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Success Stories

Last Update: 12-11-2012  
Related category(ies):
Industrial research

 

Countries involved in the project described in the article:
Belgium  |  Bulgaria  |  France  |  Israel  |  Italy  |  Poland  |  Romania  |  Russia  |  Spain  |  United Kingdom
Add to PDF "basket"

Innovative medical textiles eliminates bacteria

Scientists at the Universitat Politècnica de Catalunya • BarcelonaTech (UPC) in Spain have succeeded in eliminating infectious bacteria from medical textiles by using an enzymatic pre-treatment combined with simultaneous deposition of nanoparticles and biopolymers under ultrasonic irradiation. This was an outcome of the SONO ('A pilot line of antibacterial and antifungal medical textiles based on a sonochemical process') project, which is funded under the 'Nanosciences, nanotechnologies, materials and new production technologies' (NMP) Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 8.3 million. SONO is targeting the improvement of antimicrobial properties on medical textiles through the use of the state-of-the-art technique.

One of the prototype machines © UPC
One of the prototype machines
©  UPC

The researchers said the technique creates fully sterile antimicrobial textiles that help keep hospital-acquired infections at bay. One of the biggest challenges facing hospitals are nosocomial infections, which are infections not present and without evidence of incubation at the time of admission. These types of infections include bacterial and fungal infections, and they are aggravated by the reduced resistance of patients.

The SONO consortium, headed up by Bar-Ilan University in Israel and made up of 17 European partners, used enzymes that improve adhesion of the antimicrobial nanoparticles to the fabric under ultrasonic irradiation. The application of the enzymes allowed them to boost the durability of the nanoparticles on the fabric to a level that ensured their presence even after 70 laundry cycles.

Thanks to the results of this study, production of textiles with antimicrobial properties that are 100 % effective is possible. Another winning factor for the antimicrobial treatment's effectiveness is to incorporate hybrid materials into the fabric. These materials are based on organic and inorganic components, including zinc and chitosan nanoparticles. So not only do these materials eradicate the bacteria that are present, they also hinder the growth of new microbes.

The researchers are already collaborating with producers to make hospital gowns and linens; two prototype machines are being used to accomplish this, with one at the facilities of the Italian firm Klopman International and the other at the Davo Clothing group in Romania. A hospital in Sofia, Bulgaria is testing the fabrics, and the results are positive so far.

The growing rate of nosocomial infections are due to various factors, including the appearance of resistant microorganisms, an increased number of immunocompromised patients, more complex medical interventions and the performance of invasive procedures.

Studies have shown that infections acquired in hospitals are strong triggers of mortality and increased morbidity in in-patients. Between 3 % and 10 % of in-patients become infected while at hospital and the mortality rate for nosocomial infections is 1 %. But this problem also puts a great deal of pressure on the health system. These infections lead to longer hospital stays, up to 10 days, thus exacerbating this growing problem.


Project details

  • Project acronym: SONO
  • Participants: Israel (Coordinator), Spain, United Kingdom, Romania, France, Belgium, Poland, Italy, Bulgaria, Russia
  • Project FP7 228730
  • Total costs: €12 038 142
  • EU contribution: €8 300 000
  • Duration: October 2009 - September 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

SONO
Universitat Politècnica de Catalunya • BarcelonaTech (UPC)





  Top   Research Information Center