Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Health & life sciences

Last Update: 05-11-2012  
Related category(ies):
Health & life sciences

 

Add to PDF "basket"

Scientists tackle Huntington's disease by targeting mutant gene

Huntington's disease is an inherited, neurodegenerative disorder that usually appears in mid-adult life and leads to uncoordinated body movements and cognitive decline. The disease is due to multiple repetitions of a deoxyribonucleic acid (DNA) sequence (i.e. the nucleotides CAG) in the gene encoding the 'Huntingtin' protein. This sequence is present more than 35 times in patients suffering from this disease, while it is repeated 10 to 29 times in healthy patients. In a recent study, published in the journal PNAS, researchers in Spain succeeded in reducing the chromosomal expression of the mutant gene, which could potentially hinder disease development. The study was supported by a European Research Council (ERC) Starting Grant to Dr. Mark Isalan from the Centre for Genomic Regulation (CRG) in Spain, worth more than EUR 1.32 million under the EU's Seventh Framework Programme (FP7).

Huntington's disease leads to cognitive decline © Shutterstock
Huntington's disease leads to cognitive decline
©  Shutterstock

Researchers say adult humans specifically need the Huntingtin protein, which is located in different tissues of the body, to ensure the development and survival of neurons. The presence of a mutant gene results in an abnormal form of the Huntingtin protein. When this happens, the body is affected by a number of symptoms, including involuntary movements, behavioural changes and dementia. Despite inroads made into this condition, no one has been able to find a cure for Huntington’s disease. Patients are currently treated to ease their pain and discomfort, and most patients die around 15 years after their symptoms first appear.

Scientists know that one gene is responsible for Huntington's disease, which is not the case for other neurological disorders like Parkinson or Alzheimer. So they are hopeful that developing a therapy based on the inhibition of the mutant Huntingtin gene could lead to the development of a treatment for it. Current studies focus on the modification of proteins that are contained in all living beings, such as the Zinc Finger proteins (ZFP) that have the ability to recognise and bind to specific DNA sequences. Briefly, this process results in a regulated gene function.

Researchers from the CRG took their work one step further by reducing the chromosomal expression of the mutant gene, potentially hindering the development of the disease.

'We designed specific ZFP that recognize and specifically bind to more than 35 repetitions of CAG triplet, preventing the expression of the gene containing these repeats and reducing the production of the mutant Huntingtin protein,' said lead author Mireia Garriga-Canut, a researcher from the Gene Network Engineering group at the CRG. 'When applying this treatment to a transgenic mouse model carrying the human mutant Huntingtin gene, we observed a delayed onset of the symptoms.'

Carmen Agustín Pavón, one of the authors of the study, said, 'The next step is to optimise the design for an effective and durable treatment for patients. This would pave the way to find a therapy for Huntington's disease.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Centre for Genomic Regulation (CRG)
PNAS





  Top   Research Information Center