Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece


   Special Collections

Published: 24 October 2012  
Related theme(s) and subtheme(s)
Health & life sciencesGenetic engineering
Information societyInformation technology
Research policySeventh Framework Programme  |  Sixth Framework Programme
Special CollectionsHIV & AIDS
Add to PDF "basket"

Scientists investigate genetics of HIV-1 resistance

Investigating the genetic footprint that drug resistance causes in HIV, researchers in Europe have discovered that compensatory polymorphisms enable resistant viruses to survive. Presented in the journal Retrovirology, the study was supported in part by three EU-funded projects: VIROLAB, EURESIST and CHAIN. Both the VIROLAB ('A virtual laboratory for decision support in viral diseases treatment') and EURESIST ('Integration of viral genomics with clinical data to predict response to anti-HIV treatment') projects were funded under the 'Information society technologies' (IST) Thematic area of the EU's Sixth Framework Programme (FP6) to the tune of EUR 3.3 million and EUR 2.1 million, respectively. CHAIN ('Collaborative HIV and anti-HIV drug resistance network') has received almost EUR 10 million under the Health Theme of the EU's Seventh Framework Programme (FP7).

HIV © Shutterstock
HIV
©  Shutterstock

Preventing viral replication is the current mode of HIV-1 infection treatment. Researchers measure the number of viral particles in the blood and analyse the cluster of differentiation 4 (CD4) count to repair the immune system. Since the early 1990s, the research world has seen a marked improvement in the treatment and life expectancy of HIV patients. But drug resistance has forced researchers and physicians to come up with an array of drugs to obtain complete viral suppression.

According to the researchers, virus drug resistance comes at a cost. The virus carrying drug resistance mutations is less 'fit' than the wild-type virus when the drug is not present. Because of this, replication should be no simple task. During interruptions to treatment, wild-type viruses quickly predominate. But newly infected people can be drug resistant even before treatment begins for them.

The SPREAD project researchers monitored HIV infections across Europe, assessing 1 600 individuals who were newly infected with HIV-1 subtype B. They found that HIV-1 harboured transmitted drug resistance (TDR) in 10 % of the subjects. The team measured virus production and CD4 count, observing there was no indication that these strains of HIV-1 were weaker.

Recent studies have put the spotlight on polymorphisms, naturally occurring differences in the genes that lead to differences between animals of the same species, including blood groups. They may also increase propensity for certain diseases like cancer and type 2 diabetes. However, viruses also harbour polymorphisms.

In this study, the team discovered that polymorphisms in these strains of HIV-1, specific polymorphisms in the gene coding for protease, which is needed for viral replication, and known to act as compensatory mechanisms, make resistant strains 'fitter', even in the absence of the drug. 'Our worry is that over time we will be seeing more people presenting with TDR HIV-1,' said lead author Kristof Theys of the University of Leuven in Belgium.

Senior author Professor Anne-Mieke Vandamme, also from the University of Leuven, said: 'Contrary to what was expected, transmission of TDR virus may also contribute to a "fitter" and more virulent HIV, which has important clinical implications in how we best treat these people.'

Experts from Austria, Belgium, Cyprus, Czech Republic, Denmark, Finland, Germany, Greece, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Serbia, Slovakia, Slovenia, Spain and Sweden contributed to this study.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Leuven
Retrovirology





  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece