Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 02-10-2012  
Related category(ies):
Health & life sciences  |  Special Collections

 

Countries involved in the project described in the article:
Italy  |  United States
Add to PDF "basket"

New gene variants increase risk of paediatric cancer

Two new gene variants have been discovered by researchers from Italy and the United States that increase the risk of neuroblastoma, a paediatric cancer. This discovery was made using automated technology to perform genome-wide association studies (GWAS) on DNA from thousands of subjects. The study has effectively broadened our understanding of how gene changes may make a child susceptible to this early childhood cancer, as well as causing a tumour to progress.

Cancer cells © Shutterstock
Cancer cells
©  Shutterstock

Neuroblastoma is a long-term debilitating and life-threatening disease that is associated with poor long-term survival and affects approximately 0.18 in 10 000 people in the European Union, the equivalent of around 9 100 people. It is the most common solid tumour outside the brain in children; symptoms may include weakness, bone pain, loss of appetite and fever . In many cases it is present at birth but is diagnosed later when the cancer has spread to other parts of the body and the child begins to show symptoms of the disease.

'We discovered common variants in the HACE1 and LIN28B genes that increase the risk of developing neuroblastoma. For LIN28B, these variants also appear to contribute to the tumour's progression once it forms,' said lead author Sharon J. Diskin, Ph.D., a paediatric cancer researcher at The Children's Hospital of Philadelphia. 'HACE1 and LIN28B are both known cancer-related genes, but this is the first study to link them to neuroblastoma.'

Diskin and colleagues, including senior author John M. Maris, M.D., director of the Center for Childhood Cancer Research at Children's Hospital, published the study online in Nature Genetics. Neuroblastoma strikes the peripheral nervous system and usually appears as a solid tumour in the chest or abdomen. It accounts for 7 % of all childhood cancers, and 10 to 15 % of all childhood cancer deaths.

The research team performed a GWAS, and compared DNA from 2 800 neuroblastoma patients with that of nearly 7 500 healthy children. They found two common gene variants associated with neuroblastoma, both in the 6q16 region of chromosome 6. One variant is within the HACE1 gene, the other in the LIN28B gene. They exert opposite effects: HACE1 functions as a tumour suppressor gene, hindering cancer, while LIN28B is an oncogene, driving cancer development.

The study showed that low expression of HACE1 and high expression of LIN28B correlated with worse patient survival. To further investigate the gene's role, the researchers used genetic tools to decrease LIN28B's activity, and showed that this inhibited the growth of neuroblastoma cells in culture.

The new research builds on previous research and GWAS work by Children's Hospital investigators implicating other common gene variants as neuroblastoma oncogenes. As in the current study, these gene variants show a double-barreled effect, both initiating cancer and provoking its progression.

'In addition to broadening our understanding of the heritable component of neuroblastoma susceptibility, we think this research may suggest new therapies,' Diskin added. 'Our follow-up studies will focus on how we may intervene on these genes' biological pathways to develop more effective treatments.'

Currently in the EU, several medicines exist and are authorised for the treatment of neuroblastoma. Treatments for neuroblastoma include surgery, chemotherapy (medicines to treat cancer) and radiotherapy (treatment with radiation).


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

European Medicines Agency
International Society of Paediatric Oncology European Neuroblastoma Research Network





  Top   Research Information Center