Navigation path

Themes
Agriculture & food
Energy
  Fossil fuels
  Nuclear fission
  Nuclear fusion
  Rational energy use
  Reliability of supply
  Renewable energy sources
  Other
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Morocco
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 05-09-2012  
Related category(ies):
Energy  |  Environment

 

Countries involved in the project described in the article:
United Kingdom
Add to PDF "basket"

Sustaining power with virtual power plants

Renewable energy plants, such as wind and solar panels farms, otherwise known as small and distributed energy resources (DERs), have sprouted all across the world and are becoming an integral part of the electricity supply network (i.e. grid). Both electricity providers and consumers expect a continual electricity supply whenever they need it, and it is this fluctuation in demand combined with fluctuation in supply that is seen by many as a hurdle that must become overcome before renewable energy becomes more widespread. Researchers from the University of Southampton in the United Kingdom have devised a novel method for forming virtual power plants to provide renewable energy production in the country.

Wind power © Shutterstock
Wind power
©  Shutterstock

Power suppliers provide an estimate of their production and their confidence in meeting that estimate to ensure that energy demand is met without interruptions. Based on the confidence placed on the estimates, the grid is able to choose the appropriate number of conventional generators needed to produce and supply energy whenever it is needed. The grid is better able to schedule its activities the more accurate the estimates are, and the higher the confidence placed in those estimates. However, the uncertainty of renewable energy sources prevents individual DERs from profitably dealing with the grid directly, or participating in the wholesale electricity market because they are often unable to meet the set generation targets.

As a result, virtual power plants (VPPs) are fast emerging as a suitable means of integrating DERs into the grid. These are formed through the aggregation of a large number of such DERs, enabling them to reach similar size and supply reliability as conventional power plants.

In their study, the University of Southampton researchers promoted the formation of such 'cooperative' VPPs (CVPPs) using intelligent and multi-agent software systems. In particular, they designed a payment mechanism that encourages DERs to join CVPPs with large overall production.

Dr Valentin Robu, from the University's Agents, Interaction and Complexity Research Group, said: 'There is considerable talk about how to integrate a large number of small, renewable sources into the grid in a more efficient and cost effective way, as current feed in tariffs, that simply reward production are expensive and ineffective. CVPPs that together have a higher total production and, crucially, can average out prediction errors is a promising solution, which does not require expensive additional infrastructure, just intelligent incentives.'

Through the use of a mathematical technique called proper scoring rules (a scoring rule, is a measure of the performance of an entity, be it person or machine, which repeatedly makes decisions under uncertainty), intelligent software agents, representing the individual DERs, are incentivised to report accurate estimates of their electricity production.

The researchers devised a scoring rules-based payment mechanism that incentivises the provision of accurate predictions from the CVPPs, and through them the member DERs. They hope this will aid in the planning of the supply schedule at the grid.

'Scoring rules with specific incentive properties have long been used to design payment mechanisms that incentivise agents to report private probabilistic predictions truthfully and to the best of their forecasting abilities,' said Dr Robu. 'We show that our mechanism incentivises real DERs to form CVPPs, and outperforms the current state of the art payment mechanism developed for this problem.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Southampton
Cooperative virtual power plant formation using scoring rules





  Top   Research Information Center