Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Headlines

Last Update: 22-08-2012  
Related category(ies):
Energy  |  Research policy

 

Countries involved in the project described in the article:
Israel  |  United Kingdom
Add to PDF "basket"

Scientists put spotlight on marine power

A team of researchers from Israel and the United Kingdom has discovered that energy produced from the planet's oceans can increase twofold when novel methods for predicting wave power are used. Presented in the journal Renewable Energy, the results could help scientists drive and make marine renewable energy research an optimal source of power. The study was funded in part by the WAVEPORT ('Demonstration and deployment of a commercial scale wave energy converter with an innovative real time wave by wave tuning system') project, which has received more than EUR 4.5 million under the Energy Theme of the EU's Seventh Framework Programme (FP7).

Ocean waves © Shutterstock
Ocean waves
©  Shutterstock

The researchers from the University of Exeter in the United Kingdom and Tel Aviv University in Israel extracted energy that was more than double what is generated today by developing a way to accurately predict the power of the next wave. The outcome is much more efficient technology.

Experts postulate that while marine energy could provide twice the amount of power to the United Kingdom, the actual extraction and conversion of such energy is not up to par with solar or wind power. Marine energy is also not commercially competitive without subsidy. And while significant advances have been made in this area of research, scientists have been unable to ensure that devices are not damaged by the hostile marine environment. They have also been unable to enhance the efficiency of energy capture from waves.

This is where this latest study enters the picture. The British and Israeli researchers tackled the problem by enabling devices to accurately predict the power of the next wave and respond by extracting the maximum energy. They targeted point absorbers, which are floating devices with parts that move in response to waves. They produce power which they feed back to the grid.

According to the researchers, point absorbers are more efficient in the quantity of energy they produce if their response closely matches the force of the waves. And while past studies focused on boosting this efficiency, their study aimed at increasing the device's efficiency by predicting and controlling internal forces of the device caused by forthcoming waves.

They developed a system that gives the device the ability to extract the maximum amount of energy by predicting the incoming wave. So the data allows a program to actively control the response needed for a wave of a specific size. The chance of the device being damaged is lessened because it responds appropriately to the force of the next wave. The upshot, therefore, is that the device need not be turned off during volatile weather conditions, which is what happens now.

'Our research has the potential to make huge advances to the progress of marine renewable energy,' said first author Dr Guang Li of the University of Exeter. 'There are significant benefits to wave energy but progressing this technology has proved challenging. This is a major step forward and could help pave the way for wave energy to play a significant role in providing our power.'

For his part, co-author Dr Markus Mueller of the Environment and Sustainability Institute at the University of Exeter's Cornwall Campus said: 'The next step is for us to see how effective this approach could be at a large scale, by testing it in farms of wave energy converters.'

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Exeter
Renewable Energy





  Top   Research Information Center