Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Morocco
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 17-07-2012  
Related category(ies):
Energy  |  Research policy  |  Environment

 

Add to PDF "basket"

Novel material used to capture carbon

Carbon capture, combined with alternative renewable energy sources, has the potential to change the face of the energy market and ensure a better future for all. This is because carbon capture could mitigate the impact that traditional fossil fuels have on the environment. The concept of carbon capture is not new, as it happens naturally every day in the environment. But a team of researchers, led by the University of Nottingham (UK), has developed a novel porous material that has unique carbon dioxide (CO2) retention properties. This material can be used in the fight to minimise the levels of CO2 entering the atmosphere. The study was funded in part by the COORDSPACE ('Chemistry of coordination space: extraction, storage, activation and catalysis') project, which received a European Research Council (ERC) grant worth EUR 2.5 million under the EU's Seventh Framework Programme (FP7).

CO2 in the atmosphere © Shutterstock
CO2 in the atmosphere
©  Shutterstock

The chief feature of this new material is its absorption of CO2, which the researchers say could have an impact on the development of new carbon capture products designed to reduce emissions from fossil fuel processes. This discovery dovetails with ongoing efforts to develop new materials for gas storage.

The head of the research team, Professor Martin Schröder from the University of Nottingham, said: 'The unique defect structure that this new material shows can be correlated directly to its gas absorption properties. Detailed analyses via structure determination and computational modelling have been critical in determining and rationalising the structure and function of this material.' The team's results have been published in the journal Nature Materials.

The interlocked metal organic framework the researchers created is called NOTT-202a. It consists of tetra-carboxylate ligands, a structure made up of a series of molecules or ions bound to a central metal atom filled with indium metal centres. The structure resembles a beehive, as it is arranged in a honeycomb-like pattern, allowing CO2 to be absorbed selectively. While other gases, such as nitrogen, methane and hydrogen, can pass through the structure, CO2 remains trapped in the material's nanopores, even at low temperatures.

The team used state-of-the-art x-ray powder diffraction measurements to gain insight into the unique CO2 capturing properties of the material, as well as advanced computer modelling to probe the material at the Diamond Light Source UK research facility.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Nottingham
Diamond Light Source
Nature Materials
European Research Council
Professor Martin Schröder's COORDSPACE project on CORDIS





  Top   Research Information Center