Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Headlines

Last Update: 18-06-2012  
Related category(ies):
Health & life sciences  |  Special Collections  |  Research policy

 

Countries involved in the project described in the article:
Germany  |  Netherlands  |  United Kingdom
Add to PDF "basket"

Europeans crack embryonic stem cells mystery

Europeans are driving research and technology, and their latest achievement is in discovering that embryonic stem cell properties are impacted by the laboratory conditions used to grow them. In their groundbreaking study, a European team of researchers evaluated embryonic stem cells grown in a pure undifferentiated state. The use of next generation sequencing technology enabled them to analyse gene expression (i.e. transcriptome) and chromatin modifications (i.e. epigenome). The study, presented in the journal Cell, was supported in part by four EU-funded projects: HEROIC, PLURISYS, EUROSYSTEM and ATLAS. The results pinpoint key differences between pure stem cells and embryonic stem cells grown in laboratory settings.

Production of embryonic stem cells © Shutterstock
Production of embryonic stem cells
©  Shutterstock

What allows embryonic stem cells to stay pluripotent? Researchers have been investigating this mystery for some time. Now a team of researchers from Germany, the Netherlands and the United Kingdom provide key answers, giving us information we need to know about how cells are controlled and what is the optimal way to grow them. The findings overturn previous reports suggesting that embryonic stem cells are both unstable and primed to differentiate. This information could help lead to the development of new and effective treatments.

Researchers from Nijmegen Centre for Molecular Life Sciences (NCMLS) and Radboud University in the Netherlands, as well as the Wellcome Trust Centre for Stem Cell Research, Stem Cell Institute and the University of Cambridge in the United Kingdom, and Technische Universität Dresden in Germany confirmed that transcriptome analysis allows scientists to identify which genes are turned on or off inside the cells. The gene's level of activity is also calculated through this method. Meanwhile, epigenome analysis provides researchers insight into how genes are controlled. This study went a step further by unlocking the mystery of how embryonic stem cells maintain their pluripotency, which experts describe as the capacity to make various cell types.

Through this study, researchers obtained key reference information in their quest to create a novel kind of human pluripotent stem cell equivalent to mouse embryonic stem cells. According to the team, the data represents the ground state of pluripotency.

Commenting on the results of the study, EUROSYSTEM ('European consortium for systematic stem cell biology') coordinator Austin Smith said: 'These findings show how much we are still learning about stem cells. They also point to an underlying difference between true embryonic stem cells isolated from mice and the currently available human stem cells which are less pure and more variable.'

HEROIC ('High-throughput epigenetic regulatory organisation in chromatin') received EUR 12 million under the 'Life sciences, genomics and biotechnology for health' Thematic area of the Sixth Framework Programme (FP6). PLURISYS ('Systems biology approaches to understand cell pluripotency') is backed under the Health Theme of the Seventh Framework Programme (FP7) to the tune of EUR 2.97 million. Also supported under the Health Theme of the FP7 are EUROSYSTEM ('European consortium for systematic stem cell biology') with EUR 12 million and ATLAS ('Development of laser-based technologies and prototype instruments for genome-wide chromatin immunoprecipitation analyses') with almost EUR 3 million.

Henk Stunnenberg, head of one of the research groups that performed the study and coordinator of HEROIC, is now managing the BLUEPRINT ('A blueprint of haematopoietic epigenomes') project, which has received nearly EUR 30 million under the Health Theme of the FP7 to investigate epigenomes and their role in the underlying biological processes and mechanisms in health and disease.

Said Dr Stunnenberg: 'The epigenetic make-up - a layer of regulatory instructions on top of the genome - of the pure embryonic stem cells shows remarkable and unexpected features, in particular with respect to developmental genes. This forces a rethink of current models.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Cell
EU Research in Health
BLUEPRINT





  Top   Research Information Center