Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 13-06-2012  
Related category(ies):
Health & life sciences  |  Research policy

 

Countries involved in the project described in the article:
United Kingdom
Add to PDF "basket"

Key discovery of protein that controls nerve cell protection

Neuroscientists in the United Kingdom have made an extraordinary new discovery that could lead to new therapies for stroke and epilepsy. The discovery involves a key protein that can regulate the transfer of information between nerve cells in the brain. When activated, it could protect neurons from damage during heart failure or epileptic seizure. This study was funded in part by a European Research Council (ERC) grant under the EU's Seventh Framework Programme (FP7), and was published in the journals Nature Neuroscience and PNAS.

Neurons © Shutterstock
Neurons
©  Shutterstock

The proteins, which are known as SUMO, are responsible for controlling the chemical processes that reduce or enhance protection mechanisms for nerve cells in the brain. SUMO are in fact a family of small proteins that are chemically attached to and detached from other proteins within cells to modify their function. The SUMO proteins produce subtle responses to the brain's activity levels. This enables the regulation of information transmitted by kainate receptors. These kainate receptors handle all communication between nerve cells – activating them can lead to epileptic seizures and nerve cell death.

Protein function is controlled by altering their structure in processes that can be independent or inter-related, including phosphorylation, ubiquitination and sumoylation. What the team discovered was that there is a fine balance between phosphorylation and sumoylation, and that sumoylation is dependent on brain activity levels. 'Sumoylation reduces kainate receptor function when the body is at risk of damage — during a stroke or an epileptic fit for example — and in doing so protects the nerve cells.

The leaders of the research team are Professor Jeremy Henley and Dr Jack Mellor from the University of Bristol's Medical School (UK). Dr Mellor, a senior lecturer at Bristol's School of Physiology and Pharmacology, said: 'Kainate receptors are a somewhat mysterious but clearly very important group of proteins that are known to be involved in a number of diseases, including epilepsy. However, we currently know little about what makes kainate receptors so important. Likewise, we also know that SUMO proteins play an important role in neuroprotection. These findings provide a link between SUMO and kainate receptors that increases our understanding of the processes that nerve cells use to protect themselves from excessive and abnormal activity.'

The researchers showed that phosphorylation of kainate receptors on its own promotes their activity. However, phosphorylation also facilitates sumoylation of kainate receptors that reduces their activity. Thus, there is a dynamic and delicate interplay between phosphorylation and sumoylation that regulates kainate receptor function.

Professor Henley emphasised: 'This work is important because it gives a new perspective and a deeper understanding of how the flow of information between cells in the brain is regulated. The team has found that increasing the amount of SUMO attached to kainate receptors — which would reduce communication between the cells — could be a way to treat epilepsy by preventing over-excitation of the brain's nerve cells.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Bristol
Nature Neuroscience
European Research Council (ERC)
PNAS
'SUMO protein wrestles in brain'





  Top   Research Information Center