Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 12-06-2012  
Related category(ies):
Health & life sciences  |  Research policy

 

Add to PDF "basket"

Venomous snail key behind therapeutic molecules

Can a painkiller be re-engineered to get a closer look at how proteins bind to communication channels? Researchers across Europe are using state-of-the-art computing techniques to re-engineer a painkiller from the XEP-018 protein, which was identified inside the venom of the Conus consors, a species of sea snail. The study is funded in part by the CONCO ('Applied venomics of the cone snail species Conus consors for the accelerated, cheaper, safer and more ethical production of innovative biomedical drugs') project, which is backed with more than EUR 10 million under the 'Life sciences, genomics and biotechnology for health' Thematic area of the EU's Sixth Framework Programme (FP6). CONCO, gathering 19 European partners and the J.Craig Venter Institute in the United States, is using the venomous sea snail to develop new therapeutic molecules.

Conus consors in its natural environment during a night dive in the Chesterfield Islands, New Caledonia. © Reto Stöcklin
Conus consors in its natural environment during a night dive in the Chesterfield Islands, New Caledonia.
©  Reto Stöcklin

'All senses in our body are transmitted to and from the brain via neurons' quoted Dr Henry Hocking from Utrecht University and a CONCO member. 'The venom of the cone snail has peptides that can disrupt this circuitry. The peptides do this by attaching themselves to the openings in communication channels located on the muscular tissues receiving the neuronal signal. This is sort of like a plug. Once attached, no signal can be transmitted to the brain and you stop feeling pain.'

Dr Hocking and colleagues used nuclear magnetic resonance (NMR) to recreate the three-dimensional (3D) structure of the XEP-018 protein, a promising molecule discovered by CONCO members recently described by Philippe Favreau, a researcher at Atheris Laboratories in Switzerland, and colleagues in the British Journal of Pharmacology.

Commenting on the use of NMR, Utrecht's Professor Alexandre Bonvin said: 'NMR is a technique that people might know from hospitals, where magnetic resonance imaging scanners are used. People are put into large magnetic fields and pictures are made of them. In NMR, we put protein molecules inside and bombard them with electromagnetic waves. Instead of making pictures, we measure distances between atoms. If you know all the distances between the atoms, you can try to reconstruct a 3D object of the protein.'

It should be noted, however, that NMR does not indicate the 3D structure of these peptides. The use of computations enables NMR data to be converted into a 3D protein structure.

The team made an NMR analysis on the grid by combining gLite middleware, the next generation middleware for grid computing, with the WENMR e-Infrastructure. The WENMR ('A worldwide e-Infrastructure for NMR and structural biology') project is supported under the 'Infrastructures' Theme of the EU's FP7 to the tune of EUR 2.15 million.

'In order to calculate the 3D structures of proteins, we have to repeat the process many times,' Professor Bonvin was quoted as saying. 'We have to make thousands or tens of thousands of calculations. You get your answer within a couple of hours. WENMR, as a whole, had a submission volume of about 1.5 million jobs last year, corresponding to over 850 central processing unit (CPU) years.'

The Utrecht team is currently assessing whether it is feasible to deploy a dedicated desktop grid within the university. This would help the researchers develop their computational resources even further.

The CONCO consortium is also preparing to initiate the XEP-018 research at the clinical trial stage. 'Many analogues have been designed, synthetized and tested. The product is currently in preclinical development for the treatment of dystonia,' Reto Stöcklin, CONCO scientific team leader and head of the Swiss SME Atheris Laboratories, was quoted as saying. 'Our ultimate goal is to avoid injections and to develop a drug that everybody can use. Using specific devices, such as patches or cell-penetrating peptides to facilitate the penetration of the peptide through the skin, we believe that XEP-018 has great chances of success.'

The researchers pointed out how the WENMR study is giving developers in the global software community the means to share know-how and foster stronger cooperation.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

CONCO
WENMR
Utrecht University





  Top   Research Information Center