Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 10-05-2012  
Related category(ies):
Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Study probes how organisms evolved diverse mechanisms

Scientists have long investigated how organisms fight disease. They have also tried to mitigate the burden of disease. In a paper presented in the journal PLoS Biology, a two-man research team from the United Kingdom and the United States evaluate how Konrad et al. present an example of fungus-specific immune responses in social ants that cause the active immunisation of nest mates by infected individuals. The results provide fresh insight into our understanding of how organisms evolved diverse mechanisms that fulfil various functions, including the transfer of immunity between related individuals and the discrimination between pathogens.

Ants © Shutterstock
Ants
©  Shutterstock

Researchers from the Institute of Immunology and Infection Research at the University of Edinburgh in the United Kingdom and from Stanford University in the United States put the spotlight on Lasius neglectus ants. Once covered with lethal doses of the entomopathogenic fungus Metarhizium anisopliae, the ants were permitted to interact with their nest mates.

The nest mates were thereby exposed to fungal doses that were too low to induce a specific pattern of anti-fungal immune gene expression. According to the researchers, the recipients of the inoculum were less likely to die from a subsequent lethal dose of the same microbe. They add that the mathematical modelling suggests that these responses would enable a faster recovery for the colonies.

'As first suggested by Rosengaus and Traniello, these phenomena are strongly reminiscent of variolation as practised by humans, whereby exposure to controlled low doses of a pathogen protects individuals against future infections,' the authors write in their study.

'Unlike vaccination, however, the fungal spores transmitted in the system studied by Konrad et al. did not appear to be attenuated, for example, by digestive enzymes, and remained infective. The authors used a combination of approaches to identify the mechanisms underlying social immunisation in ant colonies: mathematical modelling; and behavioural, microbiological, immunological, and molecular techniques, which, taken together, offer an exciting proof of concept that group-level immunity may be experimentally manipulated and modelled.'

While more work needs to be performed to determine how this relates to animal and human epidemiology, the duo say it is very likely that sound evolutionary inferences may readily be made from such studies.

'It would be fruitful to examine, for instance, the cellular basis of the immune specificity suggested by gene expression patterns; whether prior exposure enables more rapid and/or stronger responses to lower doses of pathogen; how much cross-protection against other pathogens is thus generated; and whether insect social immunisation persists only as long as individuals are exposed to the pathogen or whether immune memory can produce long-term social immunisation in invertebrates. By studying social immunity at a system level in insects, perhaps we can find emergent properties that we have been missing in another important social animal — the human.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Edinburgh
PLoS Biology





  Top   Research Information Center