Navigation path

Themes
Agriculture & food
  Agriculture
  Animal health and welfare
  Food safety & health risks
  Forestry
  Marine resources & aquaculture
  Other
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 20-04-2012  
Related category(ies):
Agriculture & food  |  Pure sciences

 

Add to PDF "basket"

Study investigates aquatic parasites on fish

Researchers in the Czech Republic, Spain and the United Kingdom have successfully identified the cellular components and mechanisms that play a role in the proliferation of myxozoa, tiny aquatic parasites responsible for diseases in commercially valuable fish. Presented in the journal PLoS ONE, the study's findings shed light on the motility of myxozoa's proliferative states and their reproductive process.

Anemone © Shutterstock
Anemone
©  Shutterstock

Produced through spores and without insemination, myxozoa are related to cnidarians, what researchers define as being primitive marine species of great diversity. Examples of myxozoa include anemones, corals and jellyfish. Fish quickly fall victim to these parasites because of the latter's fast proliferation. It should be noted, however, that research has failed to elucidate the consequences of their development.

Led by the Cavanilles Institute of Biodiversity and Evolutionary Biology at the University of Valencia in Spain, the researchers used confocal laser-scanning microscopy (CLSM) to probe the anatomy and reproductive biology of the pathogens.

For their part of the study, the Spanish team investigated the morphology, structure and composition of the myxozoa Ceratomyxa puntazzi, found in the bile of the bream Diplodus puntazzo. This bream is one of the species experts are using in their attempt to diversify fish farming in the Mediterranean.

Specifically, the team identified two different developmental cycles of the parasite: (a) presporogonic proliferative development, and (b) sporogony. According to the researchers, both developmental cycles occurred in parallel, but fish were observed to have either predominantly stages lacking mature spores or predominantly stages with mature spores.

'The application of in vivo techniques has enabled the analysis of the proliferation mechanisms and the movement of this kind of pathogen, which affects the fishes’ digestive system and might cause important losses to fish farms,' says lead author Gema Alama-Bermejo from the Cavanilles Institute, who is currently carrying out postdoctoral research at the Institute of Parasitology of the Academy of Science of the Czech Republic.

In the paper, the authors write: 'As the present study shows, the combination of light microscopy, scanning and transmission electron microscopy and three-dimensional confocal laser microscopy, successfully contributed novel information on the structure and morphology of ceratomyxid parasite stages in the bile, and provided unique insights into parasite composition, cell motility and cytokinesis in myxozoans, which had not previously been studied.'

The researchers point out that although confocal CLSM may be a poorly used tool, it is extremely useful for investigating the three-dimensional morphology of the parasites as well as for determining the presence and location of certain cellular components.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Cavanilles Institute of Biodiversity and Evolutionary Biology
Institute of Parasitology of the Academy of Science of the Czech Republic





  Top   Research Information Center