Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
  Galileo
  Space exploration
  Space hardware
  Space policy
  Teledetection
  Other
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Morocco
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Headlines

Last Update: 19-04-2012  
Related category(ies):
Research policy  |  Space

 

Add to PDF "basket"

New motor can cut space exploration costs

A European team of researchers led by the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland has developed a prototype of a new, ultra-compact motor that will enable small satellites to journey beyond Earth's orbit. The objective of this new motor is to make space exploration less expensive. The result is an outcome of the MICROTHRUST ('Microelectromechanical systems (MEMS)-based electric micropropulsion for small spacecraft to enable robotic space exploration and space science') project, which is supported under the Space Theme of the EU's Seventh Framework Programme (FP7), to the tune of EUR 1.9 million.

Satellites orbiting Earth © Shutterstock
Satellites orbiting Earth
©  Shutterstock

The compact motor weights only a few hundred grams and is specifically designed to propel small satellites, weighing from 1 to 100 kilograms. The conventional thruster can change orbit around our planet and travel to more distant destinations, but it is usually used for large and expensive spacecraft. The researchers say their prototype will probably be used on CleanSpace One, a satellite currently being developed at EPFL that will clean up space debris, as well as on OLFAR, a swarm of Dutch nanosatellites able to record ultra-low radio-frequency signals on the far side of the Moon.

The prototype weighs only around 200 grams, with the fuel and control electronics included. The motor can be mounted on satellites as small as 10 x 10 x 10 square cubic metres. It is also very efficient.

'At the moment, nanosatellites are stuck in their orbits. Our goal is to set them free,' said Herbert Shea, the head of EPFL's Microsystems for Space Technologies Laboratory and the coordinator of the MICROTHRUST project.

Research into the development of small satellites has intensified in recent times, due mostly to the low cost of production and launch. The price tag for the small satellites is around USD 500 million; the price for larger ones runs into the hundreds of millions. The problem with nanosatellites lay in the lack of an efficient propulsion system ... until now.

The new mini motor does not run on combustible fuel but rather on an 'ionic' liquid, and in this project, it is a liquid chemical compound, EMI-BF4, used as both a solvent and an electrolyte. It is made up of ions, electrically charged molecules, which are extracted from the liquid and then ejected to produce thrust. The fuel is expelled, not burnt.

'We calculated that in order to reach lunar orbit, a 1-kilogram nanosatellite with our motor would travel for about 6 months and consume 100 millilitres of fuel,' said Muriel Richard, a scientist in EPFL's Swiss Space Center. 'Our prototype still has a few flow problems at the nozzle extremities, which could cause short-circuits,' Dr Shea concluded.

Researchers from the Netherlands, Sweden and the United Kingdom, members of the MICROTHRUST consortium, also contributed to this study.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

EPFL
MICROTHRUST





  Top   Research Information Center