Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Environment

Last Update: 07-03-2012  
Related category(ies):
Innovation  |  Research policy  |  Environment  |  Pure sciences

 

Add to PDF "basket"

Going underground for optimal crops and yields

Researchers from the University of Nottingham in the United Kingdom have designed an innovative technique to study the underground world of plants. Presented in the journal Plant Physiology, the results of this study will lead to improved breeding techniques for crop varieties, as well as better yields.

Wheat roots © Shutterstock
Wheat roots
©  Shutterstock

The novel approach is based on the same X-ray technology used in hospital computed tomography (CT) scans. It integrates new image analysis software that can automatically distinguish the roots of plants from other soil-based materials.

The researchers, from the Centre for Plant Integrative Biology (CPIB), tested this approach on the roots of maize, wheat and tomato. They studied the architecture, what experts refer to as the shape and branching pattern, of roots in soil by using X-ray micro computed tomography (micro CT). The team then entered the information into the new RooTrak software, which enabled them to differentiate between roots and other soil elements.

'This technique is a hugely important advance,' says Dr Sacha Mooney, an expert in soil physics in the School of Biosciences. 'The application of X-ray CT for visualising roots has been limited because we simply couldn't see a large portion of the root structure. RooTrak has enabled us to overcome this and has opened up the use of the technology for exploring the key questions regarding how we can manipulate plants and soils for improving our food security.'

The innovative software works by obtaining a stack of virtual slices through the root-bearing soil. According to the researchers, RooTrak treats each slice as a movie frame. The slice's static roots are treated as moving objects that can be tracked. So the software can tell the difference between root and water or organic elements in the soil, doing away with any glitches resulting from other techniques. This latest technique offers a three-dimensional (3D) detailed and accurate root architecture.

'Thinking of micro CT data as a sequence of images allows us to solve the problems caused by variations in the appearance of plant roots and the similarity of some roots to the surrounding soil,' says Tony Pridmore, head of data at CPIB and an expert in tracking and analysis software. 'This is important because we can now extract descriptions of root architecture quickly and objectively.'

Adds CPIB's Professor Malcolm Bennet, an expert in root biology: 'Root architecture critically influences nutrient and water uptake. A key impediment to genetic analysis of root architecture in crops grown in soil has been the ability to image live roots. Recent advances in micro CT and RooTrak software at Nottingham now make this possible.'

The Nottingham team has clinched a European Research Council (ERC) Advanced Investigator Grant worth EUR 3.5 million under the EU's Seventh Framework Programme (FP7). They will use this software along with an innovative micro CT–based imaging approach to image the roots of wheat, and choose new varieties with optimal water and nutrient uptake efficiencies.

The CPIB will lead this new project, supported by experts from Australia, Europe and Mexico.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Centre for Plant Integrative Biology (CPIB)
Plant Physiology
European Research Council (ERC)





  Top   Research Information Center