Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
  Astronomy
  Biology
  Chemistry
  Mathematics
  Physics
  Other
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Pure sciences

Last Update: 22-12-2011  
Related category(ies):
Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Scientists explore negative ions' dancing patterns

A team of Swedish and German researchers has uncovered how negative ions interact, according to findings set out in the Review of Scientific Instruments. Negative ions play a crucial role in everything from how our bodies function to how the universe is structured.

Ion interaction is key © Shutterstock
Ion interaction is key
©  Shutterstock

These results are important for our knowledge of superconductors and radiocarbon dating, as one of the study authors, Anton Lindahl, from the Department of Physics at the University of Gothenburg, explains: 'By studying atoms with a negative charge, "negative ions", we can learn how electrons coordinate their motion in what can be compared to a tightly choreographed dance. Such knowledge is important in understanding phenomena in which the interaction between electrons is important, such as in superconductors.'

A negative ion is an atom that has captured an extra electron, giving it a negative charge; an example of how they are formed is when salt dissolves in water. In our bodies there are many different types of ions, but the most common is chloride ions. These are important for cell fluid balance and nervous system functioning.

Knowing more about these negative ions could help us better understand where we came from; they play an important role in the chemical reactions that take place in space, being highly significant in processes like the formation of molecules from free atoms. These molecules may have been important building blocks in the origin of life.

Anton Lindahl continues: 'I have worked with ions in a vacuum, not in water as in the body. In order to be able to study the properties of individual ions, we isolate them in a vacuum chamber at extremely low pressure. This pressure is even lower than the pressure outside of the International Space Station, ISS. In order to be able to carry out these studies, I have had to develop measurement methods and build experimental equipment. The measurements that the new equipment makes possible will increase our understanding of the dance-like interplay.'

The new measurement methods that Mr Lindahl has developed can play an important role in a number of applications. One example is the measurement of trace substances in a technique known as accelerator mass spectrometry (AMS). AMS is applied in radiocarbon dating, which determines the age of organic matter. Another application of AMS is for measurements on ice cores drilled from polar ice, which can be used to investigate what our climate was like thousands of years ago.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Gothenburg





  Top   Research Information Center