Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 19-12-2011  
Related category(ies):
Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Scientists solve ricin riddle using new technology

A protein that controls how the deadly plant poison and bioweapon ricin kills has finally been identified by a team of Austrian researchers in a new study. With a combination of stem cell biology and modern screening methods, the team were able to get to the bottom of how the poison works.

Ricin © IMBA
Ricin
©  IMBA

One of the deadliest plant based poisons in the world, ricin has frequently hit the headlines due to its association with terrorism. Everyone from Al Quaida to the United States Army in the First World War has been reported to have tested ricin's potential as a chemical warfare agent.

And although it only takes a tiny amount of the poison to induce the onset of death within two to three days of entering the bloodstream, this deadly poison can easily be bought down at your local market as it comes from the seemingly innocent castor oil bean, and until now no antidote has been found.

Step in the Austrian team from the Institute for Molecular Biotechnology (IMBA) at the Austrian Academy of Sciences in Vienna. These researchers have identified a protein molecule called Gpr107 that is essential for the deadly effect of ricin. In other words, cells which lack Gpr107 are immune to the poison.

One of the researchers on the study, published in the journal Cell Stem Cell, Ulrich Elling comments: 'Our research suggests that a specific antidote could now be developed by making a small molecule to block the Gpr107 protein.'

As new technology means the entire mammal genome can now be screened for mutations quickly, researchers today can find out in a few weeks what scientists have been puzzling over for decades.

Normally screening methods focus on finding one single mutation using or the effects of removing a single gene, techniques that are not always efficient.

Josef Penninger comments on how their new technique could be a revolution in biomedicine. 'We've now succeeded in combining the genetics of yeast, which has a single chromosome set that allows instant gene mutation, with stem cell biology. For decades researchers have been looking for a system in mammals which would allow scientists to reconstruct millions of gene mutations simultaneously. We have solved the puzzle and even broke a paradigm in biology – we managed to make stable mouse stem cells with a single set of chromosomes and developed novel tools to use such stem cells to rapidly check virtually all genes at the same time for a specific function. The possible uses of this discovery are endless. They range from fundamental issues, like which genes are necessary for the proper function of a heart muscle cell, to concrete applications as we have done in the case of ricin toxicity.'

Scientists from Canada, Germany and the United States also contributed to the study.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Institute of Molecular Biotechnology





  Top   Research Information Center