Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 15-12-2011  
Related category(ies):
Research policy  |  Environment

 

Add to PDF "basket"

Study sheds light on natural carbon cycle dynamics

An international team of scientists has reconstructed the Last Ice Age's marine and terrestrial productivity and carbon stocks by combining isotope data that are relevant to both global quantities and models. The study, published in the journal Nature, is funded in part by the MOTIF ('Models and observations to test climate feedbacks') project, which clinched more than EUR 181 000 under the 'Energy, environment and sustainable development' (EESD) Thematic programme of the EU's Fifth Framework Programme (FP5).

Rising CO2 levels are affecting global temperatures © Shutterstock
Rising CO2 levels are affecting global temperatures
©  Shutterstock

Researchers led by the Laboratoire des Sciences du Climat et l'Environnement in France say atmospheric carbon dioxide (CO2) is one of the most significant greenhouse gases. Global warming is bring triggered by the growing amount of CO2 in the atmosphere. The researchers point out that in past times, during the transition between an ice age and a warm period, atmospheric CO2 concentrations changed by some 100 parts per million (ppm) — from an ice age value of 180 ppm to about 280 ppm during warm periods.

By using direct measurements of atmospheric CO2 trapped in air bubbles in the depth of Antarctica's ice sheets, it is possible to reconstruct these changes in the atmospheric carbon stock. But scientists have found it hard to explain what triggers these 100 ppm changes in atmospheric CO2 concentrations between glacial and interglacial climate states. It is also difficult to estimate the marine and terrestrial carbon stocks.

In this study, the scientists combined measurements of isotopes of atmospheric oxygen (18O) and carbon (13C) in marine sediments and ice cores with results from dynamic global vegetation models.

'The difference between glacial and pre-industrial carbon stored in the terrestrial biosphere is only about 330 petagrams of carbon, which is much smaller than previously thought,' says Dr Marko Scholze from the School of Earth Sciences at the University of Bristol in the United Kingdom. 'The uptake of carbon by vegetation and soil, that is the terrestrial productivity during the ice age, was only about 40 petagrams of carbon per year and thus much smaller: roughly one third of present-day terrestrial productivity and roughly half of pre-industrial productivity.'

The results of their study suggest that the cycling of carbon in the terrestrial biosphere — what is essentially the time between uptake by photosynthesis and release by decomposition of dead plant material — must have been much smaller than in the current, warmer climate. According to the researchers, there must have been a bigger size of non-decomposable carbon on land during the Last Glacial Maximum (the period when ice sheets were at their maximum extension, between 26 500 and 19 000 years ago).

'This inert carbon should have been buried in the permanently frozen soils and large amounts of peat of the northern tundra regions,' the researchers conclude. The study's results will help boost our understanding of natural carbon cycle dynamics.


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Nature Geoscience
Laboratoire des Sciences du Climat et l'Environnement





  Top   Research Information Center