Navigation path

Themes
Agriculture & food
Energy
Environment
  Atmosphere
  Biodiversity
  Clean technology and recycling
  Climate & global change
  Cultural heritage
  Earth Observation
  Ecosystems, incl. land, inland waters, marine
  Health & environment
  Land management
  Natural disasters
  Sustainable development
  Urban living
  Other
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Environment

Last Update: 12-12-2011  
Related category(ies):
Environment  |  Pure sciences

 

Add to PDF "basket"

Scientists discover what makes flies fly

Scientists in Austria and Germany have discovered a genetic switch that regulates the formation of flight muscles in flies, creatures with very small wings in relation to their bodies. The study, published in the journal Nature, suggests that spalt proteins switch myofibres from tubular to fibrillar fate during development. This function is potentially conserved in the heart of vertebrates: the stretch-stimulated muscle resembles the muscle used for insect flight.

Buzzing and humming flies © Bild Schnorrer
Buzzing and humming flies
©  Bild Schnorrer

Led by the Max Planck Institute (MPI) of Biochemistry in Germany, researchers say the gene spalt plays an instrumental role in the production of ultrafast super muscles. 'Without spalt, the fly builds only normal leg muscles instead of flight muscles,' says Frank Schnorrer from the MPI of Biochemistry, one of the authors of the study.

To ensure efficient flying, flies must quickly flap their tiny wings. The familiar buzzing and humming we hear is a result of this movement. The fruit fly Drosophila melanogaster moves its wings at a frequency of 200 hertz: its flight muscles contract and relax 200 times per second.

'In contrast, a 100-metres sprinter who moves his legs only a few times per second moves like a snail,' says Dr Schnorrer, head of the Muscle Dynamics group at MPI of Bioinformatics. The question, is, how can the fruit fly flap its wings at such a high frequency?

The researchers explain how muscles control all body movements, including the wing oscillations. But there is a uniqueness to flight muscles. While nerve impulses regulate the fly's contractions, tension stimulates the contractions as well. There are two categories of flight muscles in each fly, and each enables the wing oscillations. One type moves the wings down and stretches the other type, which triggers their contraction. So the fly's wings are pulled up again, and stable wing oscillations commence.

Lack of spalt makes flying impossible. Transcription factors like spalt are crucial for ensuring the correct transcription of the genetic information into ribonucleic acid (RNA) and proteins necessary in the respective cell type. Spalt only exists in flight muscles and is responsible for the specific architecture of their myofibrils, say the researchers, adding that these components of muscle fibres alone contribute to triggering the contraction of a muscle in response to the applied tension during the oscillations.

While flies will survive without spalt, they cannot fly. The flight muscles no longer react to tension, and behave like normal leg muscles. However, the scientists successfully created flight muscle-like muscles in flies' legs after inserting spalt.

The team says the results could prove significant for the medical sector. 'Human body muscles do not have spalt and are hardly regulated by tension,' Dr Schnorrer explains. 'But the human cardiac muscle builds spalt and the tension inside the ventricle influences the heartbeat intensity. Whether spalt plays a role in heartbeat regulation is not yet known and remains to be investigated.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

MPI of Biochemistry
Nature





  Top   Research Information Center