Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 06-12-2011  
Related category(ies):
Health & life sciences  |  Pure sciences

 

Add to PDF "basket"

Scientists find way to design new brain drugs

A Belgian-British team of researchers has found a way to design drugs able to target specific areas of the brain. Presented in the journal Proceedings of National Academy of Sciences (PNAS), the findings could help researchers develop treatments to fight diseases without triggering adverse events in other parts of the nervous system.

Nerve cells © Shutterstock
Nerve cells
©  Shutterstock

Researchers led by Professor Neil Marrion at the University of Bristol’s School of Physiology and Pharmacology in the United Kingdom worked on a subtype of ion channel called SK (Small conductance calcium-activated potassium) channels. Ion channels are proteins able to control the excitability of nerves. Ion channels, which are constructed like an electrical circuit, enable the flow of 'charged' potassium, sodium and calcium ions to enter or exit cell membranes through a network of pores formed by the channels, a subtype of which is the SK channel family.

Apamin, a natural toxin found in bee venom, was used by the team. This toxin can block various SK channel types. These channels allow potassium ions to flow in and out of nerve cells that control activity. Benefitting from apamin's ability to block a subtype of SK channel better than the others, the researchers successfully identified how three subtype SK channels (SK1 through SK3) can be selectively blocked.

The ability of apamin and other ligands to block SK channels reveals how the channels are folded to enable the binding of a drug. So drugs can be created to block those SK channels that are composed of at least two SK channel subunits to ensure a more effective fight against dementia and depression.

'The problem with developing drugs to target cellular processes has been that many cell types distributed throughout the body might all have the same ion channels,' explains Professor Neil Marrion of the University of Bristol, one of the authors of the study. 'SK channels are also distributed throughout the brain, but it is becoming obvious that these channels might be made of more than one type of SK channel subunit. It is likely that different nerves have SK channels made from different subunits. This would mean that developing a drug to block a channel made of only one SK channel protein will not be therapeutically useful, but knowing that the channels are composed of multiple SK subunits will be the key.'

Commenting on the results of the study, co-author Vincent Seutin from the Centre Interfacultaire de Recherche du Médicament at the Université de Liège in Belgium says: 'Our study also shows a difference in the way apamin and non-peptidic (potentially a useful drug) ligands interact with the channel. This may have important implications in terms of drug design.'


Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

University of Bristol
Université de Liège
PNAS





  Top   Research Information Center